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Abstract 

For an increasing number of modern database applica- 
tions, efficient support of similarity search becomes an 
important task. Along with the complexity of the objects 
such as images, molecules and mechanical parts, also the 
complexity of the similarity models increases more and 
more. Whereas algorithms that are directly based on in- 
dexes work well for simple medium-dimensional similar- 
ity distance functions, they do not meet the efficiency re- 
quirements of complex high-dimensional and adaptable 
distance functions. The use of a multi-step query process- 
ing strategy is recommended in these cases, and our in- 
vestigations substantiate that the number of candidates 
which are produced in the filter step and exactly evalu- 
ated in the refinement step is a fundamental efficiency 
parameter. After revealing the strong performance 
shortcomings of the state-of-the-art algorithm for 
k-nearest neighbor search [Korn et al. 19961, we present 
a novel multi-step algorithm which is guaranteed to pro- 
duce the minimum number of candidates. Experimental 
evaluations demonstrate the significant performance 
gain over the previous solution, and we observed average 
improvement factors of up to 120 for the number of can- 
didates and up to 48 for the total runtime. 

1 INTRODUCTION 

More and more applications of database systems require 
the efficient support of similarity search. Examples include 
molecular biology [BMH 921, medical imaging [Kor+ 961, 
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CAD/CAM systems (BK 971, and multimedia databases 
[Fal+ 941 [Haf+ 951 [SK 971 among many others [Jag 911 
[AFS 931 [GM 931 [FRM 941 [ALSS 951. In all of these ap- 
proaches, similarity is defined in terms of a more or less com- 
plex similarity distance function. The smaller the similarity 
distance value, the more similar are two objects. Typical que- 
ry types are the similarity range query which is specified by 
a query object and a similarity distance range [0, E], and the 
k-nearest neighbor query which is specified by a query object 
and a number k for the k most similar objects to be retrieved. 

Whereas single-step algorithms for similarity search al- 
ready meet the requirements of very large databases, these so- 
lutions suffer from the increasing complexity of the objects 
and of the similarity distance functions. For classic spatial 
queries such as point queries and region queries, multi-step 
algorithms have been developed to efficiently support com- 
plex objects [OM 881 [BHKS 931. The paradigm of multi- 
step query processing has already been extended to complex 
similarity search, and available algorithms aim at similarity 
range queries [AFS 931 [FRM 941 and k-nearest neighbor 
queries [Kor+ 961. However, we observed a bad performance 
of the latter solution in our experiments on large image and 
biomolecular databases. Starting from a theoretical analysis 
of the situation, we develop a novel, optimal multi-step algo- 
rithm for k-nearest neighbor search that implies a minimum 
number of exact object distance evaluations. 

The paper is organized as follows: In the remainder of this 
introduction, we specify our problem of complex similarity 
search. Section 2 is dedicated to algorithms for similarity 
search and incremental similarity ranking that directly work 
on index structures in a way they are employed by our new 
method. In section 3, we present the available multi-step al- 
gorithm for k-nearest neighbor search of [Kor+ 961 including 
the significant efficiency shortcomings of the solution. Ex- 
periments substantiate that the number of candidates is a fun- 
damental efficiency parameter. We present our novel algo- 
rithm in section 4 along with a proof that it exactly generates 
the minimum number of candidates. The experimental eval- 
uation in section 5 demonstrates the substantial performance 
improvement before the paper is concluded in section 6. 
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1.1 Simple and Complex Similarity Distance 
Functions 

Suppose the simple case that the objects of interest are rep- 
resented by low- or medium-dimensional feature vectors. 
Then, the similarity distance of two objects is typically de- 
fined by an appropriate distance function of the points in the 
feature space such as the Euclidean distance, for instance. Ex- 
amples include the section coding approach [BK 971, angular 
profiles [BMH 921, and 2-D contour features [GM 931. For 
such pure feature-based similarity models, single-step system 
architectures are appropriate: While managing the feature 
points by a multidimensional access method, query process- 
ing is performed by one of the k-nearest neighbor search al- 
gorithms that are available from the literature (cf. section 2). 

Some of the algorithms for similarity search are restricted 
to similarity models which are completely defined by a dis- 
tance function of low- or medium-dimensional feature vec- 
tors. In practice, however, complex similarity distance func- 
tions occur that may not be represented by a simple feature 
vector distance or that are too high in their dimensionality as 
they could be efficiently managed by multidimensional index 
structures. Examples include the Max-Morphological Dis- 
tance [ Kor+ 961, the approximation-based similarity of 3-D 
surface segments [KSS 971 [KS 981, the error volume of 2-D 
shapes and of 3-D solids, high-dimensional color histogram 
similarity [Haf+ 951 [SK 971, etc. If there is no technique 
available to simplify the complex similarity distance func- 
tion, query processing has to be performed by a linear scan of 
the entire database, and the performance obviously suffers a 
lot. In particular, quadratic form distance functions as they are 
successfully used for color histograms [Haf+ 951 [SK 971 or 
shape histograms [Sei 971 [AKS 981 require an evaluation 
time that is quadratic in the number of dimensions. Figure 1 
demonstrates this effect for various dimensions that occur in 
our example databases. Furthermore, the max-morphological 
distance of two images of 128 x 128 pixels is reported to re- 
quire 12.69 seconds on the average [ Kor+ 961. 

10000 i 1,656 

dimension 

Figure 1. Evaluation time of quadratic form distance func- 
tions for various dimensions 

A competing approach to avoid multi-step query process- 
ing is to use indexing methods for metric spaces that require 
nothing else than the object distance function. Examples in- 

clude the M-tree [CPZ97], SS-tree [WJ 961, FastMap 
[FL 953 etc. However, these solutions are fixed to distance 
functions that are available to the system in advance. In par- 
ticular, they do not support adaptable similarity distance 
functions which may be interactively adapted to individual 
user preferences at query time [SK 971 [Sei 971. 

1.2 Lower-Bounding Filter Distance Functions 

For similarity search in presence of complex high-dimen- 
sional or even user-adaptable similarity distance functions, 
multi-step algorithms are available [FRM 941 [Kor+ 961. The 
basic principle of these methods is to employ feature distance 
functions (also called filter distance functions) that serve as 
approximations of the complex object distance functions. 

An abstraction from the applications leads to the following 
formalism which represents the essential principle of feature 
or filter distance functions: By 0, let us denote the universe 
of objects for which the object similarity distance function 
d,: 0 x 0 + 3; is defined. A feature transformation 
F: 0 + ‘%’ maps every object o E 0 onto an n-dimensional 
feature vector F(o) E ‘31” . The distances in the feature space 
w are measured by a feature distance function 
df: %’ x 3” -+ %i. For notational simplicity, we join the 
functions df and F in order to provide df: 0 x 0 + 9Zi, 
dbol, 02) = d,(F(o, ), F( I+)) as an abbreviated notation. 
For similarity search, the feature vectors are typically man- 
aged by multidimensional access methods that support effi- 
cient k-nearest neighbor query processing with respect to the 
feature distance df 

In a multi-step query processing environment, one or more 
filter steps produce sets of candidates that are exactly evalu- 
ated in one or more subsequent refinement steps. The crucial 
correctness requirement is to prevent the system from pro- 
ducing false drops. This means that no actual result may be 
dismissed from the set of candidates. For classic spatial query 
types such as point queries and region queries, the use of con- 
servative approximations in the filter step ensures the correct- 
ness of the algorithms [OM 881 [BHKS 931. For multi-step 
similarity search, an analogous criterion is available, the low- 
er-bounding property of filter and object distance functions: 

Definition 1 (Lower-bounding property). A feature dis- 
tance function df and an object distance function d, fulfill 
the lower-bounding property if d, underestimates d, in any 
case, i.e. for all objects o,, o2 E 0 : 

d/o,, 02) s d,,(o,t 02) 

Algorithms that obey this principle have been developed 
for similarity range queries [FRM 941 as well as for k-nearest 
neighbor queries [Kor+ 961. 

The following examples provide an illustration of the wide 
variety and potential of lower-bounding feature distance 
functions: 
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Subsequence Matching. A lower-bounding feature dis- 
tance function for truncated feature vectors is employed. 
The feature vectors are obtained from the Discrete Fourier 
Transform of the original sequence objects [FRM 941. 
Max-Morphological Distance. The max-morphological 
distance of 2-D shapes is lower-bounded by the max- 
granulometric distance of the corresponding pattern spec- 
tra of the 2-D shapes. The low-dimensional feature vec- 
tors are obtained by operations from the mathematical 
morphology [ Kor+ 961. 
Approximation-based 3-D Similarity. Derive a distance 
function on key-vectors that underestimates the original 
complex similarity function for 3-D surface segments 
[KSS 971. 
Reduction of Dimensionality. Project high-dimensional 
feature vectors to low-dimensional feature vectors, and 
derive a low-dimensional distance function that lower 
bounds the high-dimensional distance function. This ap- 
proach is trivial for the Euclidean distance but also works 
for adaptable quadratic form distance functions [SK 971. 
The principle of lower-bounding feature distance func- 

tions is quite general and may be applied to several other com- 
plex similarity distance functions. 

1.3 k-Nearest Neighbor Search 

Along with similarity range queries, k-nearest neighbor 
queries are an important query type of similarity search. Sim- 
ilarity range queries are specified by a query object q and a 
range parameter E. The result set is defined to be 
sim,(&) = {o E DBI d(o, q) I E} . For k-nearest neighbor 
queries, the query object q and a query parameter k have to be 
provided that specify the retrieval of the k objects from the da- 
tabase that are most similar to q. Conceptual problems occur 
if several database objects share the same k-th distance value. 
In this case, most of the available implementations nondeter- 
ministically report any k out of the first (more than k) relevant 
objects. For conceptual reasons, we prefer the definition that 
any object that is as close or closer to q than any k-th object 
belongs to the set NN,(k) of the k nearest neighbors of q. The 
formal definition is as follows: 

Definition 2 (k-nearest neighbor query). For a query ob- 
ject q E 0 and a query parameter k, the k-nearest neighbor 
query returns the smallest set NN,(k) E DB that contains (at 
least) k objects from the database, and for which the following 
condition holds: 

Vo E NN,(k), Vo’ E DB - NN,(k): d(o, q) < d(o’, q) 

Then, the k-nearest neighbor query is equivalent to a cor- 
responding similarity range query, i.e. for the k-th distance 
value Ed = max{ d( o, LJ)I o E NN,(k)} , both queries return 
the same result set: 

NN,(k) = sim,(&,) 

Whereas for now, this connection illustrates our notion of 
k-nearest neighbor sets, we will later exploit an analogous 
equivalence on the level of candidate sets and filter distance 
functions for the correctness and efficiency proof of our new 
algorithm. 

2 SINGLE-STEP K-NEAREST 
NEIGHBOR SEARCH 

The multi-step k-nearest neighbor algorithms which we 
investigate in this paper are based on single-step methods that 
directly work on multidimensional index structures. We 
sketch some competing methods and focus on incremental 
similarity ranking which is required for our optimal multi- 
step algorithm. 

2.1 Directly Index-Based Algorithms 

In order to efficiently process k-nearest neighbor queries 
by directly using multidimensional index structures, several 
approaches are available from the literature. The proposals 
include cell-based approaches for nearest neighbor search 
which are conceptually based on Voronoi cells [PS 931 
[AMN 951 [Ber+ 981, branch and bound algorithms for 
k-nearest neighbor search [FBF 771 [RP 921 [RKV 951, and 
incremental algorithms for similarity ranking [Hen 941 
[HS 951. Recently, a fast parallel method has been suggested 
[Ber+ 971. Also theoretical results have been published con- 
cerning the efficiency of nearest neighbor search in high-di- 
mensional spaces. The performance of methods that use 
mind& and minmaxdist functions on R-trees was investigat- 
ed [PM 971, and general cost models have been developed 
[Spr 911 [BBKK 971. An important observation is that the use 
of the mindist function guarantees the optimality of the algo- 
rithms. The minmaxdist function may help to improve the 
performance of k-nearest neighbor queries for a given k but 
is of no use for the more general case of incremental ranking. 

Most of the available algorithms are tuned to efficiently 
support k-nearest neighbor queries for a fixed retrieval pa- 
rameter k. The obvious disadvantage of these methods is that 
the number k of desired answers has to be specified in ad- 
vance. If the k results are exhausted but the user is not satisfied 
with the retrieved objects, there is no chance to obtain a single 
or several next nearest neighbors without restarting the query 
from the beginning for a higher k. This problem does not only 
occur in interactive environments but also in the context of 
our optimal multi-step algorithm as we will see later: The re- 
quired number of candidates which will be retrieved from the 
index cannot be estimated in advance. An approach to over- 
come this problem is to employ methods for incremental sim- 
ilarity ranking. 
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2.2 Incremental Similarity Ranking 

Incremental similarity ranking is a similarity query type 
that corresponds to a give-me-more facility. After an initial- 
ization, the ranked objects may be retrieved by a sequence of 
getnext calls. Formally, performing an incremental similarity 
ranking means the partial materialization of a q-ranking 
which may be defined as follows [Sei 971: 

Definition 3 (q-ranking). Given a query object q E 0 and 
adatabase DB c 0 containing N = ]DB] objects, aq-rank- 
ing of the database DB is a bijection ranked,,: 3, + DB that 
maps the index set 3 ,,, = [ 1.. N] d,-monotonously onto the 
database DB, i.e. ascendingly ordered by the distance of the 
objects to the query object q. 

We simplify our notation by writing ranked,(i) = oi for 
the object oi that is ranked to position i and denote the image 
of the index set 9, by ranked,@ & = Co,, . . ., ok} . Using 
this abbreviation, the d,-monotony appears as follows: 

Vi, j E 3,: i <j a d(o,, q) I d(oj, q) 

When processing incremental similarity ranking queries, 
the object ok = ranked,(k) is reported as response to the k-th 
getnext call. Note that the q-ranking is not totally determined 
if some objects share the same distance to the query object q. 

Let us present an algorithm for incremental similarity 
ranking which is proven to be optimal with respect to the 
number of accessed index pages [BBKK 971. The algorithm 
was introduced in the context of 2-D geographic information 
systems and works on PMR quadtrees [HS 951. In figure 2, 
we present an adapted version that aims at hierarchical mul- 
tidimensional access methods [GG 971 and does no longer re- 
gard the clipping behavior of PMR quadtrees. For our exper- 
iments, we use the X-tree which has been shown to efficiently 
support dimensions up to 20 [BKK 961. 

Note that the actual distance of the query object to the box 
of the root node of the multidimensional index is not required. 
Thus, we save the distance evaluation for the root node and 
insert the root with the distance 0 without affecting the cor- 
rectness of the procedure. 

3 MULTI-STEP K-NEAREST 
NEIGHBOR SEARCH 

As already mentioned, a multi-step algorithm for k-nearest 
neighbor search has already been developed and successfully 
been applied to similarity search in 3-D medical image data- 
bases [Kor+ 961. After presenting the available solution, we 
demonstrate its inherent efficiency shortcomings. 

3.1 State-of-the-Art Algorithm 
In figure 3, we present an adapted version of the multi-step 

algorithm for k-nearest neighbor search of [Kor+ 961. The 
query object is denoted by q, and the parameter k specifies the 

method RTree :: ranking (Object query) 

1 PriorityQueue queue; 
2 queueinsert (0, root); 
3 wait (getnext-is-culled); 
4 while not queue.isempty() do 
5 Element first = queue.pop(); 
6 case first isa 
7 DirNode: 
8 foreach child in first do 
9 queue.insert (mindist (query, child.box), child) 
10 DataNode: 
11 foreach object in first do 
12 queue.insert (distance (query, object), object); 
13 Object: 
14 report (first); 
15 wait (getnext-is-culled); 
16 end 
17 enddo 

Figure 2. Incremental ranking query processing on R-trees 
(adapted from [HS 951) , 

requested number of neighbors. The basic structure of the al- 
gorithm is that it proceeds in two stages: In the first stage, a 
k-nearest neighbor search on the index is performed return- 
ing the k closest objects with respect to the filter distance 
function. For these k objects, the maximum d,,, of the exact 
object distances is determined. In the second stage, a range 
query on the index is performed returning all objects that 
have a filter distance of at most d,,, . For all of these candi- 
dates, the exact object distance is evaluated, and the k closest 
objects are reported. Figure 4 schematically illustrates the ar- 
chitecture of the algorithm including the communication of 
the two stages with the index and the object server. 

k-NearestNeighborSearch (q, k) // previous algorithm 

% 
1 Primary Candidates: Perform a k-nearest neigh- 

8 
bor search on the index around F(q) respecting the 

E 
filter distance function df 

i;: 2 Range Determination: For the primary candidates o, 

determine d,,, = maxid,@, 41 

& 3 Final Candidates: Perform a range query on the 

8 index to obtain ( o E DB : df{ F( o), F(q)) I d,,, > 
2 4 Final Result: Sort the final candidates o according to 
8 
$ 

d,(o, q) , and report the top k objects 

Figure 3. Previous multi-step algorithm for k-nearest neigh- 
bor search adapted from [Kor+ 961. 
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. 
act evaluation of p 

maty candidates and 
termination of d 

I 

Figure 4. Illustration of the previous k-nearest neighbor que- 
ry processor that proceeds in two stages 

Although steps 3 and 4 are combined to a single step in the 
original version, we prefer the four-step version for concep- 
tual clearness. Following the common terminology of multi- 
step query processing, the steps 1 and 3 are filter steps since 
they generate candidate sets from the underlying index struc- 
ture, whereas 2 and 4 are refinement steps because they per- 
form actual evaluations of the object similarity distance func- 
tion using the exact representation of the objects. 

The following lemma states the correctness of the algo- 
rithm. Subsequently, we investigate the performance aspects 
and analyze the efficiency of the procedure. 

Lemma 1. Suppose that the lower-bounding property 
d&o,, 02) < dO(ol, 02) holds for all objects o,, o2 E 0. Then 
the multi-step k-nearest neighbor algorithm of figure 3 guar- 
antees no false drops. 

Proof. See [Kor+ 961. 

3.2 Performance Shortcomings 

We implemented the k-nearest neighbor algorithm from 
figure 3 and performed some experiments on an image data- 
base that contains 64-dimensional color histograms of 12,000 
color images [SK 971. For the present experiments, we em- 

ployed the Karhunen-Loeve Transform (KLT) to reduce the 
64-D histograms to 16-D feature vectors which are managed 
by an X-tree [BKK 961. Several other techniques for reducing 
the dimensionality of high-dimensional feature vectors lead 
to lower-bounding distance functions in lower-dimensional 
vector spaces [SK 971 [Sei 971. 

We performed a sample of IZnearest neighbor queries 
which corresponds to a request of 0.1% of the database in 
each case. For a typical example, we retrieved 307 candidates 
from the filter step 3 which represent 2.5% of the database, 
resulting in 307 exact similarity distance evaluations in the re- 
finement step 4. In general, a single refinement evaluation is 
very expensive, and causes a disk access in most cases since 
the exact representation of an object may be located anywhere 
on the disk within the area that contains the database. More- 
over, for more complex objects than 64-D color histograms, 
the CPU time for a single evaluation may substantially exceed 
the I/O time of a single disk access. 

ranking according to feature distance 

•I primary drrmx 
-object distance 
_“. 

m optimal dmax 
I feature distance 

Figure 5. Object and feature similarity distances for typical 
k-nearest neighbor queries, ordered by the feature distance. 
The primary and the optimal d,,,, are marked by horizontal 
lines. For the example (k = 12) on the image database, the 
previous algorithm produces 307 candidates whereas 12.5 
would be optimal. 

In figure 5, we demonstrate a typical distribution of object 
similarity distances and the corresponding feature distances 
for the mentioned 12-nearest neighbor query, ranked by the 
feature distance values. In the example, step 2 evaluates d,,, 
to approximately 0.164, and in the diagram, this value is de- 
picted as the primary d,,, . While using this primary d,,, as 
the similarity query range, the filter step 3 obtains 307 candi- 
dates. The result NN,(k) of the k-nearest neighbor query is 
also retrieved by a corresponding similarity range query us- 
ing the range Ed = max { d( o, q) I o E NN,(k)} . If we would 
know the value of Ed already in advance, we would better use 
Ed as similarity range in step 3 without producing any false 
drops. Therefore, we call Ed the optimal d,,, and depict it in 
the diagram. In the example, its value is 0.141. 

158 



Note that by a range query that uses the optimal d,,, range 
Ed, only 125 candidates are retrieved which is approximately 
40% of 307, the number of candidates that were actually re- 
trieved from the filter step 3. To illustrate the situation in 
more detail, we consider an additional example of a reduced 
synthetic data set in figure 6 on which a lo-nearest neighbor 
query has been performed. In step 1, a primary candidate set 
is obtained from the index which contains the 10 nearest 
neighbors of the query object according to the feature dis- 
tance. From these candidates, the primary value of d,,, is de- 
termined in step 2 which approximately is 0.54 in our exam- 
ple. The range query in step 3 yields a final candidate set of 
32 candidates, from which the top 10 neighbors according to 
the object distance are determined. The final similarity dis- 
tance Ed has an approximate value of 0.34. A similarity range 
query that is bound by Ek = 0.34 retrieves a candidate set 
that contains only 18 candidates which is little more than half 
of the 32 actual candidates from step 3. 

1.2 

$ 1 

t 8 0.8 
q 
g 2 0.6 

1 'O 0.4 

F 0.2 

0 
7 (0 (0 z t- 1; % Fj 8 %5; G 

ranking according to feature distance 

Figure 6. Object and feature similarity distances for k-near- 
est neighbor queries on a synthetic example. Again, the pri- 
mary and the optimal d,, are marked by horizontal lines. 
For k = 10, the previous algorithm produces 32 candidates 
whereas 18 would suffice. 

Obviously, this behavior of the algorithm is quite unsatis- 
factory, and we are seriously interested in a better solution 
that produces a smaller number of candidates for which the 
exact object distance has to be evaluated. The more time con- 
suming a single exact evaluation is, the more important is the 
reduction of the number of candidates. As already mentioned 
in the introduction, we observed evaluation times of up to 
1.6 seconds for quadratic forms, and for the max-morpholog- 
ical distance of images, 12.69 seconds are required for a sin- 
gle evaluation on the average [Kor+ 961. From these mea- 
sured values, it becomes obvious that the exact distance 
evaluations represent the most important cost factor for com- 
plex similarity search. Therefore, as many exact distance 

evaluations should be avoided as possible which means that 
the number of candidates whose exact similarity distances 
have to be evaluated should be minimized. 

4 OPTIMAL MULTI-STEP ALGORITHM 

We just identified the number of candidates produced by 
the filter step as the major cost factor of multi-step similarity 
search, particularly for complex similarity distance functions. 
In the following, we provide a formalization of this optimality 
criterion. Whereas the previous k-nearest neighbor algorithm 
suffers from generating too many candidates resulting in a 
bad performance, we present a novel algorithm that actually 
produces the minimum number of candidates thus minimiz- 
ing the number of time-consuming exact similarity distance 
evaluations. 

4.1 Fundamental Optimality Criterion 
By the notion of r-optimality, we formalize the fundamen- 

tal efficiency aspect of multi-step k-nearest neighbor algo- 
rithms that the number of candidates should be minimal: 

Definition 4 (r-optimality). A multi-step k-nearest neigh- 
bor algorithm is called r-optimal if it does not produce more 
candidates in the filter step than necessary. 

The question emerges how the r-optimality of an algo- 
rithm can be ensured. Prior to this problem, however, we have 
to clear how the r-optimality of an algorithm is recognized. 
How much candidates are actually necessary? By the follow- 
ing lemma, we provide a criterion that answers this question: 

Lemma 2. Assume a multi-step k-nearest neighbor algo- 
rithm for the object similarity distance function d, such that 
the filter distance function df fulfills the lower-bounding 
property, i.e. dbo, s) I do(o, q) for all objects o, q E 0. 
Such an algorithm is correct and r-optimal if and only if it 
exactly retrieves the candidate set (01 dbo, q) I Ek> from 
the filter step where Ed = max{d,(o, q), 0 E NN,(k)l. 

Proof. For an arbitrary query range E, consider the candi- 
dateset {oldf(o,q)le} which is obtained in the filter step 
by performing an &-range query on the underlying access 
method. We show that for correctness and r-optimality of the 
overall algorithm, E = Ek has to be fulfilled. 

(i) Assume that E < Ed. Then, there may exist an object 
OE DB for which the estimation chain holds: 
E < dko, q) I d,( o, q) 5 Q. The second inequality indicates 
that this situation is compatible with the lower-bounding 
property of d, and df for the particular object o, and the last 
inequality implies that o E NN,(k) However, due to the first 
inequality of the chain, the object o will not be retrieved by 
the E-range query, and therefore, it is a false drop which con- 
tradicts the correctness of the algorithm. 

(ii) Assume that E > Ed. Then, there may exist an object 
o E DB for which Ed < dko, q) I E , i.e. o is retrieved by the 
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E-range query as a candidate that will be exactly evaluated in 
the refinement step. However, due to the lower-bounding 
property of d, and df, Ed < d,(o, q) I dO(o, q) , i.e. the simi- 
larity distance of o to the query object q exceeds Q, the max- 
imum distance of iVN,(k) . Thus, the object o does not rank 
among the k nearest neighbors of q which contradicts the 
r-optimality of the algorithm. 

At all, only E = Ek remains without contradiction as ap- 
propriate query range for the filter step, and the proposition 
holds. 0 

As we have seen in the preceding examples, the previous 
k-nearest neighbor algorithm fails to be r-optimal since it uses 
the primary d,,, of step 2 instead of the optimal d,,, = Ed . 
In general, the primary d,,, of step 2 overestimates the op- 
timal query range Ek , i.e. Ed I d,,, , and effects a lot of un- 
necessary candidates in step 3 as we already observed in the 
experiments. The essential problem is that the value of Ed is 
not known in advance of step 3. Only at the end of step 4, the 
actual value of Ed is available. 

4.2 Optimal Multi-Step Algorithm 

The preceding observation leads us to the basic idea of our 
new algorithm: The value of d,,, is decreased keeping step 
with the ongoing exact evaluation of the object similarity dis- 
tance for the candidates. At the end of the step by step refine- 
ment, d,,, reaches the optimal query range Ed and prevents 
the method from producing more candidates than necessary 
thus fulfilling the r-optimality criterion. Figure 8 provides a 
pseudocode description of the procedure whereas in figure 7, 
the algorithm is illustrated schematically. 

IGNearestNeighhorSearch (q, k) // optimal algorithm 

1 initialize ranking = index.increm-ranking (F(q), df) 
2 initialize result = new sorted-list (key, object) 
3 initialize d,, = w 
4 while o = ranking.getnext and d,(o, q) I d,,, do 
5 if do@, s> s d,,, then result.insert (d,(o, q) , o) 

6 if result.length 2 k then d,,, = result[k].key 
7 remove all entries from result where key > d,,, 
8 endwhile 
9 report all entries from result where key I d,,, 

Figure 7. Optimal multi-step k-nearest neighbor algorithm. 
The second condition in step 4 as well as the condition in 
step 5 are optional optimizations. 

The algorithm has two basic components: By the incre- 
mental ranking query on the underlying access method, can- 
didates are iteratively generated in ascending order according 
to their feature distance d, to the query object. We will show 

Figure 8. Illustration of the new optimal multi-step query 
processor for k-nearest neighbor search 

that this property ensures the r-optimality of our algorithm. 
The second major component is the result list that manages 
the k nearest neighbors of the query object q within the current 
candidate set, keeping step with the candidate generation. 
The current k-th distance is held in d,,, which is set to infin- 
ity until the first k candidates are retrieved from the index and 
evaluated. As we will show in the subsequent, d,,, will be 
decreased exactly down to Ek . This fact plays an important 
role in the subsequent analysis since by d,,, , the retrieval of 
candidates and the termination of the algorithm is controlled. 

4.3 Analysis of the New Algorithm 

In this subsection, we show the correctness and r-optimal- 
ity of our algorithm. We argue about k-th distances and 
k-nearest neighbors of arbitrary object sets C c 0. For this 
purpose, we slightly generalize our notation which up to now 
was fixed to a particular object set, the database DB c 0 . Ta- 
ble 1 lists the symbols and their meanings as they are used in 
the subsequent. 

Definition 5 (q-ranking of C). A q-ranking of an object set 

C c 0 is a bijection r” ‘: 3 I,-, -+ C that is monotonous with 
respect to the distance of the objects from C to the query ob- 
ject q, i.e. 

Vi, j E 9,: i <j 3 d(r” ‘(i), q) I d(rq’ ‘(j), q) 
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Symbol Description 

0 universe of obiects 

1 d:OxO-+%: 1 similarity distance function 1 

1 3, = {l,...,n) 1 indexset 

9E 0 
kE 3m. 

query object 

query parameter 

d” k(C) for C c 0 
k-th distance of objects 
from C to q 

NN,(k)C for C c 0 
k-nearest neighbors of q 
within C i 

Table 1. Symbols in the context of k-nearest neighbor search 

Definition 6 (k-th distance of C). For any subset C E 0 
of objects, i.e. C E @( 0) where p(O) denotes the power 
set of 0, the function d4’ k: @ (0) + %A returns the k-th dis- 
tance of the objects from C to the query object q if C contains 
at least k elements, and = otherwise: 

dY’ k(Q = O” 
if ICI <k 

d( ry’ ‘(k), q) else 

Definition 7 (k-nearest neighbor set of C). For any object 
set C c 0 , let NN,(k)’ denote the set of the k-nearest neigh- 
bors of the query object q within C. We define NN,(k)’ in 
terms of a similarity range: 

NN,(k)C = (o E Cl d(o, q) I dqlk(C)) 

In order to show the correctness and r-optimality of our 
new algorithm, we start by proving the observation that d,,, 
is decreasing with an increasing number of candidates. 

Lemma 3. Let a query object q E 0 and a query parame- 
ter k be given. For any object set C c 0 and any additional 
object o st C , the following estimation is true: 

dY’k(Cu{o})Sf’k(C) 

Proof. If ICI < k , then 8’ k(C) = 00, and the proposition 

is obvious. For ICI 2 k , consider the following cases: 

(i) if d(o, q) > dq’ k(C), then o does not rank among the 

k-nearest neighbors of 4 within C u (0) , i.e. 

NNU(k)cu’O’ = NN,(k)’ and d”’ k(C u { o }) = dq’ k(C) . 

(ii) if d(o, q) = 8” (C) , then o also is a k-nearest neigh- 

borofqwithinCu{~},NN,(k)~“t~) = NN,(k)‘u{o), 

andd4.k(Cu{o}) = pk(C). 

(iii) if d(o, q) < 8’ k(C) , then o ranks among the k nearest 

neighbors of q within C u (0) , i.e. o E NNq(k)C”‘“‘. If 

there is a single object 5 E NN,(k)’ that has the k-th distance 

to q, d(6, q) = d”’ k(C), then o displaces 8 from NN,(k)‘, 

and all remaining distances are lower than dq’ k(C) which im- 

plies 8’ k(C u { 0)) < dq’ k(C) . If some objects within C with 

a rank below k share the same distance dq’ k- ‘(C) = dq’ k(C) , 

then all of them remain included in NNq(k)C”‘O’, and 

dqpk(Cu (0)) = pk(C). 

At all, we obtain dq’ k(C u { 0)) I dq* k(C) as proposed. 0 

4.4 Proof of the r-Optimality 

We are now prepared to show the correctness and r-opti- 
mality of our new algorithm under the supposition of the low- 
er-bounding property of filter and refinement distance func- 
tions. In order to avoid a notational confusion of filter and 
object distances, we append the subscript index o to pk and 
write dz k in the following. 

Theorem. When providing the filter step with a filter dis- 
tance function df that lower-bounds the object similarity dis- 
tance function d, , i.e. d&o, q) 5 d,(o, q) for all objects 
o, q E 0, the new multi-step k-nearest neighbor algorithm 
(figure 7) guarantees no false drops and is r-optimal. 

Proof. First, let us observe that the algorithm obtains its 
candidates from the incremental ranking query on the under- 
lying access method. The candidate set is growing step by 
step and may be regarded as a sequence of iteratively extend- 
ed subsets of the database, C, c C, c . . . c DB . By using 
the result list, the algorithm determines the k-nearest neigh- 
bor set NN,” k(Ci) f or each Ci according to the object simi- 
laritl distance d,, and the i-th value of d,,, is equal to 
d,“’ (Ci). By induction over the increasing sets, lemma 3 
justifies the estimation chain doq’ k(C,) 2 d,” k(C,) 2 . . . 
which is lower-bounded by d,” k(DB) . Thus, d,,, never be- 
comes smaller than d,” k(DB) . According to lemma 2, this 
fact ensures that our algorithm produces no false drops, since 
d max is used as the upper bound for the feature distance of the 
candidates that are retrieved from the filter step. 

It remains to prove that the filter step does not produce un- 
necessary candidates. Such a behavior would contradict the 
r-optimality of the algorithm. From lemma 2, we know that 
candidates are unnecessary if they have a feature distance 
which is greater than d,” k(DB) . Although d,,, is iteratively 
decreased while retrieving new candidates, the boundedness 
by the final value d,“’ k(DB) applies at least for the last can- 
didate olast that is retrieved from the filter step, i.e. 

161 



df(q,,t, q) 2 4: '(DW . N ow, we exploit the fact that our fil- 
ter step performs an incremental similarity ranking which ef- 
fects that the candidates are retrieved in ascending order with 
respect to their filter distance df to the query object, i.e. 
df(o,, q) 2 df(o,, q) I . 5 d,(olast, q) Thus, no candidates 
o’ are obtained from the filter step or even evaluated in the 
refinement step for which dt(o’, q) > d,,q’ k(DB) is true, and 
the improved multi-step k-nearest neighbor algorithm is r-op- 
timal as proposed. 0 

Let us observe that d,,, may incidentally reach its final 
value quite early among the first few candidates. However, 
this fact may not be recognized earlier than all candidates are 
evaluated. On the other hand, it may happen that the actual 
valueof d, q’ k (D ) B 1s only reached for the last candidate. This 
case occurs e.g. if d,(o, q) = d,(o, q) = do” k(DB), and it 
cannot be excluded until all candidates are evaluated that 
have a feature distance below d,” k(DB) . 

5 PERFORMANCE EVALUATION 

From the analysis in the preceding subsections, we know 
the theoretical optimality of our new algorithm. In this sec- 
tion, we demonstrate the actual and significant improvement 
of our method in comparison with the previous algorithm. 

The algorithms were implemented in C++, and the experi- 
ments were run on an HP Cl60 under HP-UX 10. For the low- 
and medium-dimensional feature spaces, we used the X-tree 
[BKK 961 as an appropriate index structure. Clearly, the num- 
ber of candidates as the main cost factor does not depend on 
the index architecture, and a comparable improvement behav- 
ior is to be expected for multi-disk index structures such as the 
parallel X-tree [Ber+ 971. Presently, we avoid to mix the con- 
cepts and defer the parallel case to future work. 

5.1 Color Image Database (64-D) 

Our first example is a database of 12,100 color images rep- 
resented by 64-D color histograms [SK 971. A 12-D X-tree 
manages the histogram vectors which are reduced to 12 di- 
mensions by the Karhunen-Loeve Transform, resulting in an 
index that contains 240 pages. 

We performed a sample of 200 k-nearest neighbor queries 
for k E { 2,4, . . . , 12 } thus retrieving up to 1% of the images 
from the database. Figure 9 depicts the average number of 
candidates that are produced by the filter step (top diagram) 
as well as the overall runtime (bottom diagram). Note that e.g. 
fork = 8, the previous algorithm already retrieves 10% of the 
database (I ,257 candidates) whereas in the optimal algo- 
rithm, only 1.4% of all database objects (172 candidates) are 
read from disk and evaluated exactly. The selectivity im- 
provement factor in our example is approximately 7.2 and 
does not vary much. The overall runtime is improved by a fac- 
tor of 5.5 in the average. 

cu d (D m 0 cv v 7 
query parameter k 

Figure 9. Improvement of filter selectivity (top) and overall 
runtime (bottom) for a database of 12,100 color images that 
are represented by 64-D color histograms. 

5.2 Leaps in the Filter Selectivity 

In figure 10, we demonstrate an effect which cannot be 
recognized from averaged evaluations of query samples since 
it becomes only evident for single queries. Recall that the pre- 
vious algorithm performs a range query on the index using 
d max as query range. The value of d,,, is determined as the 
maximum object similarity distance of the k nearest neigh- 
bors of the query object with respect to the feature distance. 
These k nearest neighbors correspond to the first k of all can- 
didates that were retrieved by the similarity ranking query in 
the optimal algorithm. Observe that in most cases, the prima- 

ry 4lax has the same value for a wide range of k, and the cor- 
responding number of candidates increases with k in a stair- 
case fashion. In figure 10, query a produces such steps where 
the number of candidates is 3 for k = 1; 306 for k E { 2,3 } ; 
699 for kE (4, . . . . 7); 1,408 for kE (8, 9}, and 6,255 
from k = 10 up to k > 20. For k 5 20, query b produces only 
two steps of 8 11 for I < k I 3 and 3,584 candidates for k > 3 

5.3 Color Image Database (112-D) 

For our final example, we use a database of 112,700 color 
images which are represented as 112-D color histograms and 
indexed by a 12-D X-tree containing 2,387 pages. Again, we 
performed samples of k-nearest neighbor queries for 
k E { 2,4, . ., 12} thus retrieving up to 0.01% of the objects 
from the database. The top diagram in figure 1 I depicts the 
number of candidates generated by the previous and the opti- 
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Figure 10. Leaps in the filter selectivity: For two query ob- 
jects a and h, the number of candidates out of 12,100 objects 
depending on the query parameter k is depicted for the pre- 
vious and the optimal algorithm. For the previous algorithm, 
leaps can be observed. 

ma1 algorithm. The bottom diagram demonstrates the affect 
of the selectivity improvement onto the overall runtime. 
Whereas the improvement factor of the filter selectivity is ap- 
proximately 17, the overall runtime is improved by a factor 
of 8.5 in the average. The experiments substantiate the gen- 
eral observation that the more complex a object distance func- 
tion, the stronger is the impact of the filter selectivity onto the 
overall runtime. 
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Figure 11. Improvement of filter selectivity (top) and overall 
runtime (bottom) for a 112-D image database of 112,700 col- 
or images. 

Our optimal algorithm does not only reduce the number of 
candidates whose exact representation are read from disk and 
whose object similarity distance to the query object is evalu- 
ated exactly, but also reduces the number of page accesses in 
the index. This behavior results from the fact that the previous 
algorithm performs a range query over the primary d,,, val- 
ue that overlaps a larger portion of the data space than the op- 
timal query range dCF ‘(DB) to which the optimal multi-step 
algorithm restricts its search in the index. At k = 8 for exam- 
ple, the previous algorithm accesses 50% of the index pages 
(I ,200 of 2,387) whereas the optimal algorithm reads only 
22% of the index pages (533 of 2,387). The improvement fac- 
tor is greater than 2.0 and does not vary significantly with the 
increasing query parameter k in our experiments. 

5.4 Pixel-Based Shape Similarity (1,024-D) 

The next experiments are performed on a 1,024-D data- 
base of 10,000 grayscale images as an example for the adapt- 
able pixel-based shape similarity [AKS 981 [Sei 971. In the 
example, we used neighborhood influence weights for the 
neighborhood area (9,l) around each pixel. The resulting dis- 
tance function is a quadratic form according to the model, and 
we measured an average evaluation time of approximately 
100 milliseconds for a single image distance. By applying the 
Karhunen-Lokve Transform (KLT) in order to reduce the di- 
mensionality [SK 971, various indexes were created for the 
reduced dimensions 16,32,48, and 64. Figure 12 depicts the 
performance results for a sample of 50 k-nearest neighbor 
queries (k = 5). Whereas the number of candidates monoto- 

8 i;j 2000 
-0 
B 1500 
5 0 1000 _-----..-----~ ---- ~. 

‘t5 $ 500 

2 O 
z 16-D 32-O 48-D 64-D 

dimension of index 

q previous 
algorithm 

w optimal 
algorithm 

Figure 12. Filter selectivity and overall runtime for a 
1,024-D image database of 10,000 grayscale images. 
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nously decreases with increasing dimension of the index, the 
overall runtime is minimum for the 48-D index in our exam- 
ple. The reason is the quadratic nature of the filter distance 
function in the index and the well-known curse of dimension- 
ality for high-dimensional index structures. Nevertheless, the 
new optimal algorithm outperforms the previous two-stage 
algorithm by a factor of 2.3 for the number of candidates and 
a factor of 1.6 to 2.3 for the overall runtime. 

5.5 Uniformly Distributed Data (20-D) 

For the next experiments, we synthetically created a data- 
base of 100,000 objects uniformly distributed in the 20-D 
space. An index of dimension 15 was used, and we performed 
a sample of 200 k-nearest neighbor queries fork = 10. As sim- 
ilarity distance function, we employed artificially generated 
quadratic forms that represent the Euclidean distance 
(sim-id), a weighted Euclidean distance (sim-1-O) and a more 
general quadratic form (sim-2-2). Figure 13 demonstrates 
that we obtained average improvement factors of 72,120, and 
64 for the number of candidates. These reductions lead to an 
acceleration of the total runtime by factors of 26,48, and 23 
on the average for the sample queries. 

simid siml-0 sim2-2 

sir-mid siml-0 sim2-2 

similarity matrix 

Figure 13. Improvement of filter selectivity (top) and over- 
all runtime (bottom) for k-nearest queries (k = 10) on a 20-D 
dataset of 100,000 uniformly distributed objects. 

6 CONCLUSIONS 

We developed a new multi-step algorithm for k-nearest 
neighbor search which clearly outperforms the state-of-the- 
art algorithm. In addition to the significant performance gain, 
we have theoretically shown that our algorithm is optimal 
with respect to the number of candidates that are retrieved 

from the underlying index. The number of candidates is iden- 
tified to be an important parameter for the overall runtime ef- 
ficiency since the exact evaluation of complex, high-dimen- 
sional and adaptable similarity distance functions is the 
dominating cost factor of multi-step similarity query process- 
ing. Along with the CPU time, nearly every candidate causes 
a random disc access in the refinement step since the exact 
representations of the objects are in general spread over the 
database. For the filter step, the impact of a smaller number 
of candidates is that a smaller number of index pages has to 
be accessed. 

Our new algorithm optimally supports multi-step k-near- 
est neighbor search. The performance is no longer affected by 
hot spots of d, among the first k of the df.-candidates, but 
only depends on the quality of the filter step: The higher the 
values of a feature distance function, the better is the exact 
value of the object distance function estimated, and the less is 
the expected number of candidates that are obtained from the 
filter step. The best filter selectivity is achieved by using the 
greatest of all possible lower-bounding feature distance func- 
tions. On top of the theoretical analysis that proves the r-op- 
timality of our new algorithm, experimental evaluations dem- 
onstrate the significant performance gain of the novel 
technique over the previous solution. 
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