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Abstract. We consider a problem of elastic matching of time series. We
propose an algorithm that automatically determines a subsequence b’ of
a target time series b that best matches a query series a. In the proposed
algorithm we map the problem of the best matching subsequence to the
problem of a cheapest path in a DAG (directed acyclic graph). Our ex-
perimental results demonstrate that the proposed algorithm outperforms
the commonly used Dynamic Time Warping in retrieval accuracy.

1 DMotivation

For many datasets we can easily and accurately extract the beginning and ending
of patterns of interest. However in some domains it is non-trivial to define the ex-
act beginning and ending of a pattern within a longer sequence. This is a problem
because if the endpoints are incorrectly specified they can swamp the distance
calculation in otherwise similar objects. For concreteness we will consider an ex-
ample of just such a domain and show that Minimal Variance Matching (MVM),
proposed in this paper, can be expected to outperform Dynamic Time Warping
(DTW) and Euclidean distance. There is increasing interest in indexing sports
data, both from sports fans who may wish to find particular types of shots or
moves, and from coaches who are interested in analyzing their athletes perfor-
mance over time. Let us consider the high jump. We can automatically collect
the athletes center of mass information from video and convert to time series.
In Fig. 1, we see 3 time series automatically extracted from 2 athletes.

Both sequence A and B are from one individual, a tall male, and C is from
a (relatively) short female with a radically different style. The difference in their
technique is obvious even to a non-expert, however A and C where automati-
cally segmented in such a way that the bounce from the mat is visible, whereas
in B this bounce was truncated. In Fig. 1(middle) we can see that DTW is
forced to map this bounce section to the end of sequence B, even though that
sequence clearly does not have a truly corresponding section. In contrast MVM
is free to ignore the sections that do not have a natural correspondence. It is this
difference that enables MVM to produce the more natural clustering shown in
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Fig. 1. (top) Three examples of athletes trajectories as they attempt a high jump.
The sequence shows the height of their center of mass (with possible parallax effects).
Reading left to right we can see their bounding run followed by the takeoff and landing.
(middle) The alignment achieved by DTW and MVM on two of the sequences. (bottom)
The clustering achieved by DTW and MVM.

Fig. 1(bottom). While this is a somewhat contrived example on a specialized do-
main, similar remarks apply to many commercially important domains including
medical data mining and oil exploration.

2 Related Work

Because time series are a ubiquitous and increasingly prevalent type of data,
there has been much research effort devoted to time series data mining in recent
years. Many data mining algorithms have similarity measurement at their core.
Examples include motif discovery [1], anomaly detection [2], rule discovery [3],
classification [4] and clustering [5]. In this paper we deal with computation of
time series distances based on elastic time series matching.

As many researchers have mentioned in their work [3,4,6], the Euclidean
distance is not always the optimal distance measure for similarity searches. For
example, in some time series, different parts have different levels of significance
in their meaning. Also, the Euclidean distance does not allow shifting in time
axis, which is not unusual in real life applications.



To solve the problem of time scaling in time series, Dynamic Time Warping
(DTW) [7, 8] aligns the time axis prior to the calculation of the distance. DTW
distance between time series is the sum of distances of their corresponding el-
ements. Dynamic programming is used to find corresponding elements so that
this distance is minimal. The DTW distance has been shown to be superior to
the Euclidean in many cases [5,9-11]. See [12] for a detailed discussion of DTW.
As illustrated in Section 1, DTW requires the matched time series to be well
aligned, and it is particularly sensitive to outliers, since it is not able to skip any
elements of the target series. DTW always matches the query time series to the
whole target time series.

The Longest Common Subsequence (LCSS) measure has been used in time
series [13,14] to deal with the alignment and outliers problems. Given a query
and a target series, LCSS determines their longest common subsequence, i.e.,
LCSS finds subsequences of the query and target (of the same length) that
best correspond to each other. The distance is based on the ratio between the
length of longest common subsequence and the length of the whole sequence.
The subsequence does not need to consist of consecutive points, the order of
points is not rearranged, and some points can remain unmatched. When LCSS
is applied to time series of numeric values, one needs to set a threshold that
determines when values of corresponding points are treated as equal [14]. The
performance of LCSS heavily depends on correct setting of this threshold, which
may be a particularly difficult problem for some applications.

The proposed MVM (Minimal Variance Matching) computes the distance
value between two time series directly based on the distances of corresponding
elements, just as DTW does, and it allows the query sequence to match to only
subsequence of the target sequence, just as LCSS does. The main difference be-
tween LCSS and MVM is that LCSS optimizes over the length of the longest
common subsequence (which requires the distance threshold), while MVM di-
rectly optimizes the sum of distances of corresponding elements (without any
distance threshold). The main difference between DTW and MVM is that MVM
can skip some elements of the target series when computing the correspondence.

While DTW requires that each point of the query sequence is matched to
each element of the target sequence, MVM allows skipping elements of the tar-
get sequence. LCSS allows skipping elements of both query and target sequence.
Therefore, MVM should be used when one is interested in finding the best match-
ing part of the target sequence for a given query sequence, since it guarantees
that the whole query sequence will be matched. This is, for example, the case,
when the query is a model sequence, one wants to find in a given data set. How-
ever, when the query sequence contains outliers and skipping them is allowed,
then LCSS should be used.

3 Minimal Variance Matching

We now present an algorithm for elastic matching of two time series of different
lengths m and n, which we will call Minimal Variance Matching (MVM).



More specifically, for two finite sequences of real positive numbers a = (a1, ..., a,,)
and b = (by,...,b,) with m < n, the goal is to find a subsequence b’ of b of
length m such that a best matches b’. Thus, we want to find the best possible
correspondence of sequence a to a subsequence b’ of b. Formally we define a
correspondence as a monotonic injection f : {1,...m} — {1,...,n}, (ie., a
function f such that f(i) < f(i + 1)) such that a; is mapped to by(; for all
i € {1,...,m}. The set of indices {f(1), ..., f(m)} defines the subsequence b’ of b.
Recall that in the case of DT'W, the correspondence is a relation on the set of
indices {1,...,m} x {1,...,n}, i.e., a one-to-many and many-to-one mapping.

Once the correspondence is known, it is easy to compute the distance between
the two sequences. We do not have any restrictions on distance functions, i.e.,
any distance function is possible. To allow for comparison to the existing time
series matching techniques, we use the Euclidean distance in this paper:

Our goal is to find a correspondence f so that d(a,b, f) is minimal. More
precisely, an optimal correspondence f of numbers in series a to numbers in
series b is defined as the one that yields the global minimum of d(a, b, f) over all
possible correspondences f:

f = argmin{d(a,b, f) : f is a correspondence}. (2)

Finally, the optimal distance is obtained as d(a,b) = d(a, b, f), i.e., d(a,b) is the
global minimum over all possible correspondences.

We can also state the correspondence problem in a statistical framework. Let
us assume that there is a subsequence b’ of b that is a noisy version of a such that
a ~ b +N(0,v), where N'(0, v) denotes a zero-mean Gaussian noise variable with
variance v, i.e., b = (by(;y); for i € {1,...,m}. Since the mean of the differences
(by@s) — aq)i is zero, i.e., ' —a ~ N(0,v), the variance o2 of difference sequence
(bgaiy — aq)i is given by

m

2(a,b, f) = % S by — a)* (3)

=1

Clearly, o2%(a,b, f) = v (the variance of the Gaussian noise). Observe that in
this case the variance corresponds to the Euclidean distance (1). Thus, the vari-
ance of the difference sequence is minimal when mapping f establishes a correct
correspondence of elements of both sequences.

Now we describe the method used to minimize (3). We first form the differ-
ence matrix

r=(ri) = (bj — a).
It is a matrix with m rows and n columns with m < n. For example, the difference
matrix for two time series t1=( 1, 2, 8, 6, 8) and t2=( 1, 2, 9, 3, 3, 5, 9) is shown



o] 1 8 2 2 4 8]
~1fo]7 1 1 3 7
r=|-7-6[1]-5-5 -3 1
~5-4 3 —3-3[-1] 3
|-7-6 1 —5 -5 —3[1]]

Fig. 2. In order to compute f for t1=( 1, 2, 8, 6, 8) and to=( 1, 2, 9, 3, 3, 5, 9), we
first form the difference matrix with rows corresponding to elements of ¢t; and columns
to elements of ta.

in Fig. 2. Observe that t; and ty are similar if we ignore the two elements in ¢,
with value 3.

Clearly, (r;;) can be viewed as a surface over a rectangle of size m by n,
where the height at point (¢,7) is the value r;;. We obtain the correspondence
with minimal variance by solving the least-value path problem on the difference
matrix. To obtain the solution, we treat (r;;) as a directed graph with the links:
ri; is directly linked to 7y if and only if (1) k —4¢ = 1 and (2) j < . When
traversing the obtained directed graph, the meaning of both conditions is as
follows. For any two consecutive points r;;, 7 in each path (1) means that we
always go to the next row, while (2) means that we can skip some columns, but
cannot go backwards.

Our goal is to have a least-value path with respect to the following cost
function for each directed link: linkcost(ri;, i) = (rk1)%. Each path can start in
first row, between columns 1 and n —m, i.e., at ry; for j = 1,...,n —m and the
path can end at 7p,; for j =n —m,...,n. The conditions (1) and (2) imply that
we can obtain a DAG (directed acyclic graph) G whose nodes are the elements
of (r;5);; and weights are defined by the function linkcost. It is well known that
we can solve the least-value path problem using the shortest path algorithm
on G. The obtained least-value path defines exactly correspondence f , which
minimizes (3) in accordance with (2).

The shortest path for the example matrix in Fig. 2 is marked with boxes.
Following the boxes, the optimal correspondence f is given by

f(l):l, f(2):2’ f(3)237 f(4):67 f(5):7

Finally, from (1) we obtain the distance d(t1,t2) = v/3 ~ 1.732.

The obtained optimal correspondence f automatically determines a subse-
quence b’ = f(a) of a target time series b that best matches a query series a. In
particular, two cases are possible: Whole Sequence Matching: Subsequence
b’ is dense in b, which indicates a similarity of a to b. Subsequence Match-
ing: Subsequence b’ is not dense in b but is dense in part of b which indicates a
similarity of a to part of b.



4 Experimental Results

We compare the results of MVM to the DTW results on three data sets Face,
Leaf, and Gun from [12]. A detailed description of these data sets is given in [12].
We briefly mention that Face dataset is composed of 112 sequences representing
head profiles of 4 different individuals. The length of each sequence ranges from
107 to 240 points. Leaf dataset is composed of 442 sequences representing con-
tours of six different leaf species. The length of each sequence ranges from 22 to
475 points. Gun dataset is composed of 200 sequences representing gun drawing
events by two different actors. The length of each sequence is 150 points.

Following [12], we measure the classification accuracy of 1-NN (Nearest Neigh-
bor) classifier applied to the distance matrices obtained by the evaluated meth-
ods. The obtained results are shown in Table 1. As can be seen MVM systemat-
ically outperforms DTW. The DTW results are cited from [12], where all possi-
ble sizes of warping windows for DTW were examined and the optimal warping
window size was determined for each data set. We did not use any warping or
correspondence window bound for MVM.

Face | Gun | Leaf
MVM |[98.21| 100 |97.29
DTW |96.43|99.00 | 96.38

Table 1. 1-NN classification accuracy. The DTW results are cited from [12].

Although the proposed method does not require any length normalization,
we used length normalized time series in order to allow for a comparison to the
results in [12]. When calculating the distance between a pair of time series with
MVM, we resampled the query series so that its length is approximately 75% of
the length of the target series. This means that the total elasticity amount for
MVM is about 25% of the length of the second time series. We obtained nearly
identical results with elasticity varying from 25% to 50%. The values of each
time series were zero-mean normalized in the standard way. That is, each time
series X is normalized as: X = %, where p(X) is the mean value of X
and o(X) is its standard deviation.

The superior performance of MVM reported in Table 1 is due to MVM ability
to correctly align matched sequences in that bad matching elements of the target
sequence are excluded from the correspondence. One example of this fact is given
in Section 1. Here we use the Face dataset in order to directly link this fact to the
superior classification accuracy of MVM. The face dataset is a particularly good
dataset on which to demonstrate this fact. It consists of head profiles converted
to time series representing the curvature at sample points. Because the face
is intrinsically elastic, as the subject smiles or grimaces, Euclidean distance in
unsuitable here, and we therefore would consider a more elastic distance measure
such as DTW or MVM.



As one might imagine, the parts of the signal that correspond to the face
contain the most useful information, and the parts of the signal that correspond
to the back of the head contain much less information. In fact the parts of the
signal that correspond to the back of the head may actually contain misleading
information, since the texture of hair causes problems for the time series gener-
ation algorithm. The problem with DTW is that it is forced to align everything,
thus may be forced to align this poor quality data from the back of the head in
one signal to poor quality data in another. A small amount of such poor qual-
ity data can rapidly swamp the distance calculation. In contrast, MVM has the
ability to simply ignore the poor quality data, as shown in Fig. 3. Note that in
this simple contrived example we might be able to achieve better results simply
by truncating the back of the head section of the signals. However this begs a
nontrivial question of finding a good segmentation algorithm. In any case in data
mining we generally assume that we do not have such a priori knowledge about
the domain in question.
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Fig. 3. Three time series from Face dataset, derived from profiles, compared using
DTW and MVM. Two time series of the same person are correctly identified by MVM
which is not the case for DTW.
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5 Conclusions

The proposed new method for time series matching, called MVM, performs the
following tasks simultaneously (1) automatically determines whether the query
sequence best matches the whole target sequence or only part of the target



sequence, (2) automatically skips outliers that are present in the target se-
quence, (3) minimizes the statistical variance of dissimilarities of corresponding
elements. The reported experiments show that this method outperforms DTW.
By mapping the problem of elastic matching of sequences to finding a cheapest
path in a DAG, we provide an efficient algorithm to compute MVM.
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