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Supportedness and Tameness:
Differentialless Geometry of Plane Curves

Longin Jan Latecki' and Azriel Rosenfeld?

Abstract

We introduce a class of planar arcs and curves, called tame arcs, which is general enough
to describe (parts of) the boundaries of planar real objects. A tame arc can have a smooth
parts as well as sharp (non-differentiable) corners. Thus, a polygonal arc is tame. On the
other hand, this class of arcs is restrictive enough to rule out pathological arcs which have
infinitely many inflections or which turn infinitely often: A tame arc can have only finitely
many inflections, and its total absolute turn must be finite.

In order to be able to relate boundary properties of discrete objects obtained by segment-
ing digital images to the corresponding properties of the continuous originals, the theory of
tame arcs is based on concepts that can be directly transfered from continuous to discrete
domains. A tame arc is composed of a finite number of supported arcs. We define sup-
ported digital arcs and motivate their definition by the fact that supported digital arcs can
be obtained by digitizing continuous supported arcs. Every digital arc is tame, since it con-
tains a finite number of points, and therefore, it can be decomposed into a finite number of
supported digital arcs. This way we obtain a correspondence between supported continuous
arcs and supported digital arcs.

1 Introduction

Any continuous model of some class of real objects should on the one hand be able to
reflect relevant shape properties as exactly as possible, and on the other hand should be
mathematically tractable, in the sense that it should allow for precise, formal description of
the relevant properties. For example, it does not make much sense to model the boundaries
of 2D projections of real objects as all possible curves in IR?. This class is too general to
allow us to formally describe any shape properties of sets in this class and there are curves
with very unnatural properties (e.g., plane filling curves). Therefore, some restrictions must
be added.

We are interested in defining boundary curves of planar sets that represent 2D projections
of real objects. We also want to establish a clear relationship between shape properties of
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the 2D projections of real objects and discrete objects obtained by segmenting their digital
images, since in pattern recognition discrete objects are analyzed by algorithms and the
properties extracted are assumed to represent properties of the original objects.

Therefore, we will not use the classical tools of differential geometry to define boundary
curves of planar sets that represent 2D projections of real objects. Differential geometry
is based on the concept of derivative, which requires the calculation of limits of infinite
sequences of numbers. Since this calculation cannot be transfered into discrete spaces, no
analog of the concept of derivative in discrete spaces exists that has similar properties.
However, we agree that the concepts of differential geometry, like curvature, characterize im-
portant shape properties of boundary curves of planar sets. Therefore, we will define shape
concepts of differential geometry, in particular the total curvature, by geometric concepts
that can be also applied to discrete spaces.

The class of continuous planar arcs and curves is very large; it includes many “patho-
logical” examples such as the “space-filling” curves of Peano and the nowhere differentiable
“snowflake” curve of Sierpinski. Requiring the arcs and curves to be differentiable is too
restrictive, since this excludes polygons, which are not differentiable at their vertices. A
somewhat better idea is to require differentiability at all but a finite number of points; but
this is not restrictive enough, because it allows arcs that can oscillate infinitely many times
(e.g., the graph of the function zsin(1), shown in Figure 1(a)) or turn infinitely often (e.g.,

the inward-turning spiral illustrated in Figure 1(b)).

)
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Figure 1: (a) The graph of the function zsin(1/z). (b) An inward-turning spiral that turns
infinitely often.

This paper defines classes of continuous planar arcs and curves that include polygonal
arcs and polygons, but exclude the pathological cases. Our definitions are based on the
concept of a supporting line of a set S — a line [ through a point of S such that S lies in
one of the closed half-planes bounded by [. We call a set S supported if there is at least
one supporting line through every point of S. It can be shown (Section 2) that a closed,
bounded, connected S is supported iff S is (an arc of) the boundary of a convex set. The
concept of a supporting hyperplane (in particular, supporting line) is a fundamental tool in
the theory of subdifferentiation of convex functions, which is part of convex analysis, since
as argumented by Rockafellar [10], p. XVI:



“Supporting hyperplanes to convex sets can be employed in situations where tangent hyper-
planes, in the sense of the classical theory of smooth surfaces, do not exist.”

In Section 3, we define supporting sectors and rays, which correspond to directional tan-
gent lines. In Section 4, we relate the properties of supported arcs to the standard properties
of differential geometry. This relationship is based on the well-established connections be-
tween differential geometry and convex analysis. We show that a supported arc A has left
and right derivatives at every point, and that A is differentiable at a point if it has a unique
supporting line at that point. On the other hand, a supported arc A can have (even infinitely
many) “cusps”: non-endpoints at which A has more than one supporting line. (Here and in
what follows, “arc” is short for “arc or simple closed curve”.)

We call an arc A uniquely supported if it has a unique supporting line at every non-
endpoint. Thus a uniquely supported arc is everywhere differentiable and has no cusps. We
show that the curvature of a C? (and thus uniquely supported) arc has the same sign at
every point.

We call a (simple) arc tame if it can be subdivided into a finite number of supported
subarcs (Section 5). Evidently, polygonal arcs are tame, but it can be verified that the
pathological arcs of Figure 1 are not tame. The subdivision points of a tame arc are called
its joints. The points of a tame arc can be classified into regular and inflection points,
according to whether they are interior to some supported subarc. Consequently, inflection
points are mandatory joints, so that a tame arc can have only finitely many inflections,
though it can have infinitely many cusps. As we shall see, both regular and inflection points
can be cusps.

In Section 6 we show, using an associated polygonal arc, how the total curvature, which
we will call the (total) turn, of a tame arc can be defined in terms of supporting lines.
We prove that the total turn of a supported arc is at most 360°; this is well known for
differentiable arcs. We also give alternative characterizations of cusps and inflections using
an associated polygonal arc (Section 7).

In Section 8, we define supported digital arcs and motivate their definition by the fact
that supported digital arcs can be obtained by digitizing continuous supported arcs. The
extension of our theory of tame arcs to digital arcs is also based on the concepts of supporting
lines and half-planes:

A digital set S C Z? is digitally supported if for every point p € S, pis a (4-) boundary point
of a digital half-plane containing S (i.e., there exists a continuous half-plane containing S
such that p has a 4-neighbor outside this half-plane).

We show that a digital set is supported iff it is contained in the boundary of the digitization
of a convex set. This gives us a new definition of a convex digital set as a digital set whose
boundary is digitally supported. We also show that a digital set is supported iff it is contained
in the digitization of a continuous supported arc.

2 Supporting Lines; Supported Sets

We begin with a definition of fundamental tools in convex analysis (e.g., see Rockafellar [10],
Section 11, p. 99-100):



Definition: Let S be a subset of the plane, and p a point of S. A straight line /g(p) through
p is called a supporting line of S at p if S is contained in one of the closed half-planes into
which lg(p) divides the plane. This closed half-plane is called a supporting half-plane.

We will deal here with supported sets, which are (not necessarily proper) arcs, as we will
shortly see:

Definition: A subset S of the plane is supported if, for every p € S, there exists at least
one supporting line of S at p.

Note that if S has a supporting line at p, then p must be a boundary point of S (i.e., any
neighborhood of p contains points of the complement of S). Note also that supporting lines
need not be unique. For example, if S is a single point, every line through that point is a
supporting line of S; if S is a segment of a straight line [, the same is true for its endpoints,
but at its interior points, [ is the only supporting line of S.

Before stating some basic facts, we summarize some basic definitions: An arc is a subset
of the plane which is a homeomorphic image of an interval of nonzero length: A : [a, b] — IR?,
where a < b. The points A(a) and A(b) are called the endpoints of arc A. If the endpoints
of an arc are the same (i.e., A(a) = A(b)), the arc becomes a simple closed curve (or a
Jordan curve), and can be regarded as having no endpoints. A simple closed curve can
also be defined as a homeomorphic image C : S! — IR? of a circle of nonzero radius r. A
simple closed curve and a single point are sometimes called non-proper arcs. If arc A is a
subset of arc B or curve C, it is called a subarc of B or C. We recall [16, 17] that the
closed convex hull conv(S) of a set S is the intersection of all the closed half-planes that
contain S.

We state now a few basic properties of supported sets. Since their proofs are based on
elementary concepts of convex analysis, they will be omitted. (The proofs can be found in
Latecki and Rosenfeld [7].)

Proposition 1 A closed, bounded, connected set S is supported iff S is a subarc (not nec-
essarily proper) of the boundary of a convex set (the convex hull of S). [ ]

In particular, it holds that

Proposition 2 A set S is supported iff it is contained in the boundary of its closed convex
hull. [ |

Let C be a simple closed curve. By the Jordan curve theorem, the complement of C'
has two nonempty connected components, one of which is bounded and surrounded by C.
Let C* be the closure of the bounded component. By the Jordan curve theorem, C' is the
boundary of C*, and the interior of C* is nonempty.

Proposition 3 A simple closed curve C' is supported iff C* is conver. [ ]

This result is a special case of a theorem which was proved by a number of prominent
mathematicians, including Caratheodory [2], Brunn [1], and Minkowski [9], and which can
also be found in a more general version in Valentine [16] (Theorem 4.1, p. 47).
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The characterization of supported arcs can also be derived from a concept introduced by
Latecki, Rosenfeld, and Silverman [6]:

Definition: A subset S of the plane is said to have property CP; if for every three collinear
points of S, the line segment joining at least two of them is contained in S.

Property C'P; appears to be the first simple intrinsic characterization of parts of the bound-
aries of convex sets. Considerably more complicated characterizations were given over 30
years ago by Menger [8] and Valentine [15].

It is shown in [6] that an arc A is supported iff it has property C P; (Theorem 14), and that
this in turn is equivalent to AU A(a)A(b) being the boundary of a convex set (Theorem 12),
where A(a)A(b) is the line segment whose endpoints are A(a) and A(b). If A # A(a)A(b),
AU A(a)A(b) is a simple closed curve ([6], Corollary 6); thus either a supported arc is a line
segment, or joining its endpoints yields a supported simple closed curve. We thus have

Proposition 4 Arc A is supported iff AU A(a)A(b) is the boundary of a conver set. [ |

3 Supporting Sectors

Definition: Let p be a point of a set S such that at least one supporting line of S at p exists.
The supporting sector og(p) is defined as the intersection of all the closed supporting half-
planes of S at p.

Clearly og(p) is a closed and convex subset of the plane. We assume from now on that S
is not a subset of a line (the contrary case was discussed in Section 2). If there is a unique
supporting line [ of S at p, then og(p) is the closed half-plane determined by [ that contains
S (see Figure 2(a)). If there is more than one supporting line of S at p, then og(p) is a closed
angular sector with angle ag(p) less than 180° (see Figure 2(b)). Note that a line through p
is a supporting line of S at p iff it is contained in the closure of the complement of os(p).

If S has a unique supporting line at p, we define the turn angle of S at p as 0°. If S has
more than one supporting line at p, we define the turn angle of S at p as 180° — as(p).

Ir(p) p s
m Ir s p)
€Y (b)

Figure 2: og(p) is the supporting sector of S at point p.

We now assume that the set S is an arc. The supporting sector og(p) of an arc S is
bounded by two rays emanating from p that make an angle as(p) < 180°. We will call these
rays the left and right supporting rays of A at p depending on the direction in which we
traverse A; The left supporting ray of S at p will be denoted by Irs(p) and the right
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supporting ray of S at p will be denoted by r7g(p) (see Figure 2). These concepts are
precisely defined in the appendix.

4 Relation to Differential Geometry

Any arc is continuous, but we have not assumed that supported arcs are differentiable. In
this section we show that a supported arc must have left and right derivatives at every point
(Theorem 1).

Let A : [a,b] — IR? be an arc and let 2,y € (a,b). Consider the vector %. As y
approaches z from the left (right), this vector may approach a finite, nonzero limit; if so, the
limit is called the left (right) derivative of A at = and is denoted by A’ (z) (A (x)). The

right derivative of A at a, and the left derivative of A at b, are defined similarly.

The left (right) derivative exists at = € (a,b) and is a finite and non-zero vector A’ (z)
(A’ (z)) iff the limit of the lines through A(z) and A(t) as t approaches x from below, i.e.,
t < z (above, i.e., z < t).

If the directional derivatives A’ (z) and A’ (z) exist and are equal, then we say that the
derivative of A at x exists and has value A'(z) = A’ (z) = A’ (z).

The following theorem describes a fundamental relation between supportedness of arcs
and the existence of directional derivatives. It was noted as early as 1893 by Stoltz [14]. It
follows, for example, from Theorem 23.1, p. 213, in Rockafellar [10].?

Theorem 1 Let A: [a,b] — IR? be a supported arc. Then the directional derivatives A' (z)

and A! (x) exist and are finite and non-zero at every point x € (a,b), and the same for A’ (a)
and A, (b).

If the supporting line at a point x of A is unique, the left and right supporting rays at x
are collinear, which implies that the left and right derivatives at = are equal. We thus have

Theorem 2 Let A : [a,b] — IR? be a supported arc, and let © € (a,b). Then the derivative
Al(z) exists (i.e., A'(x) = A" () = A (x)) iff the supporting line at x is unique. u

The proof of Theorem 2 can be found in Rockafellar [10], Theorem 25.1, p. 242.

Definition: We define a non-endpoint p of a supported arc A to be a cusp if there is more
than one supporting line of A at p.

By Theorem 2, the arc A is not differentiable at a cusp. Note that a supported arc
can have infinitely many cusps, as illustrated in Figure 3. It is not hard to see that at the
accumulation point of the cusps in Figure 3, the arc is differentiable.

Note that differentiability does not imply supportedness (i.e., the converse of Theorem 2
is not true); at a point of inflection of an arc (see Section 5), its derivative may exist, but it
has no supporting line.

3Theorem 23.1 in [10] is stated for convex functions. However, a supported arc can be locally treated as
a graph of a convex function from a closed interval to IR.
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Figure 3: A supported arc can have infinitely many cusps.

Definition: An arc A is uniquely supported if at every non-endpoint p € A there exists
a unique supporting line [4(p).

Clearly, if an arc is uniquely supported, it is supported. However, the converse is not
true; for example, a convex simple polygonal arc is supported but does not have unique
supporting lines at its vertices.

We show that a supported arc can curve in only one direction. In order to be able to talk
about curvature of arcs, we consider arcs that belong to class C2, where an arc A : [a, ] — R
belongs to class C? if its first and second derivatives exist and are non-zero vectors for every
point ¢ in the open interval (a, b), i.e., we require that a C? arc is an immersion (Spivak [12],
p. 1-1). For a simple closed curve A : [a,b] — IR* to belong to class C?, we additionally
require that A(a) = A(b), A'(a) = A'(b), and A"(a) = A"(b). Clearly, a supported C? arc
(or curve) is uniquely supported.

We recall that the curvature of an arc can be defined as rate of change of slope (as a func-
tion of arc length). The magnitude of the curvature depends on how the arc is parameterized
(which need not be by arc length), but its sign does not depend on the parameterization.
We can now restate Theorem 8, p. 1-26, from Spivak [12] (Spivak calls supported simple
closed C? curves conver, p. 1-16):

Theorem 3 A simple closed C? curve C : [a,b] — IR? is supported iff, for every p € [a,b],
the curvature k(p) satisfies k(p) > 0 (or k(p) <0, depending on the direction in which C is
traversed) for every p € |a, b]. [

The following theorem is a simple consequence of Theorem 3.

Theorem 4 If a C? arc A is supported, then for every non-endpoint p € A, the curvature
k(p) satisfies k(p) > 0 (or k(p) <0, depending on the direction in which A is traversed).

Proof: We can extend arc A to a supported simple closed C? curve C, and then apply
Theorem 3 to C. We need only construct a supported C? arc B, lying in the half-plane de-
termined by the line segment A(a)A(b) that does not contain arc A, such that the endpoints
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and first and second derivatives at the endpoints of B coincide with those of A. [ ]

The converse of Theorem 4 is not true. Consider a spiral S such that for all non-endpoints
p € S the curvature k(p) exists and has the same sign; see Figure 4. Evidently, for any point
p € S such that the total turn of the part of the spiral from p to one of the endpoints is
greater than 360°, there is no supporting line of S at p. (In Section 6 we will define the total
turn of a supported arc and show that it is at most 360°.)

©

Figure 4: A differentiable arc may not be supported.

5 Tame Arcs

The class of supported arcs is quite restricted; they cannot turn by more than 360°, and
they can only turn in one direction, so they cannot have inflections. In this section we study
a class of arcs which we call “tame”; a tame arc consists of a finite number of subarcs each
of which is supported.

Definition: An arc T : [a, b] — IR? will be called tame if there exist points 21, ..., z,, € [a, b]
with 1 = a and x, = b such that T'([x;, z;11]) is supported for ¢ = 0,...,n — 1. The points
Z2, ..., Tn_1 Will be called the joints of 7T'.

Note that there are many choices for the joints; as we shall see below, only inflections
are mandatory joints, but it may also be necessary to introduce additional “optional” joints
to ensure that the subarcs are supported (e.g., see Figure 4).

Trivially, a supported arc is tame. In general, a tame arc 7' can be described as “piece-
wise” supported. Note that even at its joints, a tame arc has one-sided derivatives. If they
are unequal, so that the union of the left and right supporting rays is not a straight line, we
shall call the joint a cusp.

The class of tame arcs seems to be general enough to describe (arcs of) the boundaries of
planar objects. On the other hand, this class is restrictive enough to rule out the pathological
examples of arcs and curves discussed in in the introduction. For example, the spiral shown
in Figure 1, which turns inward infinitely often, is an arc, but is not tame, since no matter
how we divide it into a finite number of subarcs, the first or last arc still turns infinitely
often, and so does not have a supporting line at every point. Note also that a tame arc can
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only have finitely many inflections, since its curvature cannot change sign except possibly
at the xz;’s. Thus, for example, the graph of xsin(%) is not tame, since it oscillates infinitely
often as x approaches 0. Sierpinski‘s “snowflake” curve and Peano‘s “space-filling” curves
are not tame for the same reason.

A polygonal arc (or polygon) is piecewise straight, so that in particular it is tame. The
term “tame” is used in knot theory to describe knots that are equivalent to polygonal knots
[4]; in our case too, tameness is a generalization of polygonality.

Definition: A point = of a tame arc 7" will be called a regular point if there exists a
supported subarc 7" of T such that z is interior to 77, i.e., x € T" and z is not an endpoint
of T". A point that is not a regular point will be called an inflection point.

Evidently, an inflection point of a tame arc 7" must be a joint of 7. The other joints of
T, if any, are “optional” joints.

Classically, an inflection point of a differentiable arc A (e.g., Figure 5(a)) is a non-endpoint
at which the curvature of A changes sign. By Theorem 4, such a point cannot be an interior
point of a supported subarc of A; hence, if A is differentiable and tame, each of its subarcs
between consecutive joints is uniquely supported, and its curvature has a constant sign on
each of these subarcs. However, a tame arc not need be differentiable; it can have both
regular and inflection points that are cusps. For example, the cusps in Figures 5(b), (¢) and
(d) are inflection points. In Section 7 we will use total turn concepts to classify inflection
cusps.

@ (b) (d)

Figure 5: Inflection points.

As we have already seen, a tame arc that contains only regular points is not necessarily
supported, e.g., the spiral in Figure 1(b). A polygonal arc also has no inflection points, but
as shown in Figure 6(a), it need not be supported. More generally, an arc that has a straight
subarc (Figure 6(b)) may have no inflection points, but may not be supported. In both of
the cases in Figure 6, at least one of the points in the subarc uv must be a joint.

Definition: A maximal straight subarc S of a tame arc 7" will be called an inflection
segment if there does not exist a supported subarc 7" of T such that S is interior to 77,
i.e., S CT"and S does not contain an endpoint of 7.

Evidently, at least one point of an inflection segment must be a joint.

6 The Total Turn of a Tame Arc

In differential geometry, the total curvature of an arc is defined by integrating the curvature.
Similarly, the “total turn” of a polygonal arc is defined by summing the turns of its vertices.
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(b)

Figure 6: Inflection segments.

In Section 3, we defined the turn angle at a point of a supported arc. In this section we will
define the (total) turn of a tame arc. Our definition will be based on associating a polygonal
arc with the tame arc. The associated polygonal arc is not unique, but as we shall see, the
turn of every polygonal arc associated with a given tame arc is the same. Therefore, we can
define the total turn of a tame arc as the total turn of any associated polygonal arc.

6.1 Simple Polygonal Arcs

Let {z; : 0 < i < n — 1} be distinct points in the plane. The ordered sequence of vectors
(%i%it1)i0,...,n—1 defines a polygonal arc polyarc(zo, z,) joining zo to . If 2,11 NxjTj01 =
{zi, xiz1} N {zj, x4} for 0 < i # j < n, we call polyarc(xo, z,,) a simple polygonal arc.
If xy = z,, it is called a (simple) polygon.

Let ab and bc be non-collinear vectors; then the turn angle 7(b) is defined as sign * «,
where « is the angle between ab and bc and sign = +1 or —1 depending on whether the
triangle abc is oriented clockwise or counterclockwise (see Figure 7(a) and (b)). If ab and bc
are collinear, then 7(b) = 0 if ab and bc point in the same direction (see Figure 7(c)). (The
case where ab and bc are collinear but point in opposite directions will be discussed later.)

@ (b) (c)
Figure 7: The turn angle 7(b) at a vertex b with respect to two vectors ab and bc: (a)
7(b) > 0, (b) 7(b) < 0, and (c) 7(b) = 0.
Definition: If 24 # x,, we define the turn of a simple polygonal arc polyarc(zg, x,) as
n—1
T(polyarc(xy, ,)) = Z 7(x;),
i=1

where 7(z;) is the turn angle at vertex z; with respect to vectors z; jz; and z;z;y; for
i=1,...,n—1. If g = z,, i.e., the arc polyarc(zo, z,) is a polygon, then we define its turn
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as
n—1

T(polyarc(xy, T,)) = Z T(x5),
i=0
where the turn angle at vertex zy is defined with respect to vectors z, 1y and zox;.
For example, the turn of polyarc(zg,zs) in Figure 8(b) is given by 7(polyarc(zy,z5)) =
T(x1) + -+ +7(x4), and the turn of polyarc(zy, xe) with o = x¢ in Figure 8(a) is given by
T(polyarc(xo, xs)) = 7(xo) + -+ + 7(x5).

X, ) Xy < X, )
\\ X3 + \\
4+ 3 L+
X, X,
N A
Xsg

G

X -
0 Xo= X%

@ (b)

Figure 8: The turn of the polygonal arc in (a) is 7(z1) + --- +7(z4). The turn of the closed
polygonal arc in (b) is 7(x¢) + -+ + 7(z5).

If polyarc(xg, 1) = (Zi%it1)iz0,...n—1 is @ simple polygon, the bounded region surrounded
by polyarc(zg, x,) is called its interior. If the interior of the polygon is to the right of each
vector x;x; 1, then the turn angle 7(z;) at each vertex z; is equal to 180° minus the interior
angle of the simple polygon at z;. A positive value of the turn at a vertex x; indicates that
x; is a convex vertex of the polygon (e.g., 7(x2) > 0 in Figure 8(b)), and a negative value of
the turn at a vertex x; indicates that z; is a concave vertex of the polygon (e.g., 7(z3) < 0
in Figure 8(b)).

It is well known that if polyarc(zg, x,,) is a simple polygon, then |7 (polyarc(zy,x,))| =
360° (see, e.g., Klein [5], Lemma 4.16, p. 182). Note that the sign of the turn de-
pends on the direction in which we traverse the polygonal arc, i.e., 7(polyarc(xg, z,)) =
—7(polyarc(zy,, o)), where polyarc(xn, to) = (Tk+1%k)i=n—1,..,0- We thus have

Proposition 5 The turn of a simple polygon C is 7(C) = £360°. [

6.2 Supported Arcs

We will now show how to associate a polygonal arc P(A) with any supported arc A. We will
then define the turn of A as the turn of P(A), and show that this turn is the same for any
P(A) associated with A.

Definition: Let A : [a,b] — IR? be a supported arc. We will show below that there exists a
set, of points {a; € A: 0 <7 <k} such that A(a) = ag, A(b) = ag, and

(Hoa(a:): 0<i<k}
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is a bounded region whose boundary is a simple polygon (see Figure 9(a)). Let {z; : 0 <
i < n} be the set of vertices of this polygon ordered such that ay = zy and ax = =,
and such that the interior of the polygon is either to the right of each vector z;x;y, or
to the left of each vector x;z;y1 (see Figure 9(b)). We associate the simple polygonal arc
P(A) = (%iTit1)i=0,..n—1 with the supported arc A, and define the turn of A as

7(A) = 7(P(4)).

Xo=&  Xs=&

(b)
Figure 9: (b) shows an associated polygonal arc of the supported arc in (a).

We now show that for any supported arc A, there always exists such a set of points
{a; € A:0 < i <k}. In fact, in addition to the endpoints A(a) = ag and A(b) = ay, it is
sufficient to take a point of A with maximal positive z-coordinate, one with maximal negative
z-coordinate, one with maximal positive y-coordinate, and one with maximal negative y-
coordinate; thus four points (besides the endpoints) always suffice. We emphasize that the
a's are not unique; e.g., a different set of a's for the supported arc in Figure 9 is shown in
Figure 10.

Note that if a point v of the supported arc A coincides with a vertex of an associated
P(A), which is the case for ay = 3 in Figure 9, then |7(v)| = 180° — as(v), where a4(v) is
the angle of the supporting sector o4(v) of A at v € A, i.e., |7(v)| (with respect to P(A)) is
the turn angle of A at v.

Xo=8&  X5= 3

(b)
Figure 10: (b) shows a different associated polygonal arc of the supported arc in (a).

We now show that the turn of arc A defined in this way does not depend on the choice
of the points {a; € A : 0 < ¢ < k}. We show this for the absolute value of the turn

12



of arc A in order to abstract form the particular orientation of arc A. Observe first that
N{oa(a;) : 0 < i < k} is convex (it is a finite intersection of supporting half-planes of A).
Consequently, the polygonal arc P(A) is part of the boundary of a convex set.

Suppose first that ap = ax (i.e., A is a simple closed curve). Then P(A) is a simple
polygon, and 7(P(A)) = £360° by Proposition 5. Since 7(P(A)) = £360° for every simple
polygon, this result does not depend on the choice of the a's. Thus, we have

Proposition 6 The absolute turn of a supported simple closed curve A is |T(A)| = |360°|.
]

We now assume that ag # a,. Consider the polygonal arc P'(A) = P(A) o z,x9, where
“o” represents concatenation, so that P'(A) is P(A) followed by x,z,. Evidently, P'(A) is a
simple polygon; thus |7(P'(A))| = 360° (Proposition 5). The absolute turn of P(A) is equal
to the turn of P'(A) minus the turn angles at vertices ay = zo and ay = z, (see Figure
11(a)). These turn angles are |7(ag)| = 180° — aa(ap) and |7(ax)| = 180° — caa(ax) (see
Figure 11(b)). Therefore

IT(A)[ = [7(P(A))| = [[7(P"(A))| = (7(a0) + 7(ax))]
= [360° — (180° — aa(ap) + 180° — cwa(ay))|
= aa(ag) + aa(ar)-

Consequently, the absolute value of the turn of a supported arc A does not depend on the
choice of ay, ..., ax. We also have (see Figure 11(b))

Proposition 7 The absolute turn of a supported arc A with endpoints A(a) # A(b) is given
by
[7(A)] = ca(A(a)) + aa(A(D)).

Xy 4

T{3) & !
@ Xo= & /4 : X5= & : ®)
T(a;)

Figure 11: The absolute turn of the supported arc A with endpoints aq and a3 is equal to
aa(ag) + aa(as).

Since a supported arc A is contained in one of the closed half-planes determined by its
endpoints A(a) # A(b), the angle of the supporting sector a4(p) is less than or equal to
180°, where p = A(a) or p = A(b). Consequently, we obtain
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Proposition 8 The absolute turn of a supported arc A is |T(A)| < 360°. |
Now we prove two technical propositions which we will need in Section 7.

Proposition 9 Let A : [a,b] — IR? be a supported arc. Then A is contained in the convex
hull of an associated polygonal arc P(A).

Proof: We showed above that there exists a set of points {a; € A : 0 < ¢ < k} such that
A(a) = agy, A(b) = ag, and

C(A) =(oala;): 0<i<k}

is a bounded region whose boundary is a simple polygon which contains P(A). The state-
ment of the proposition follows from the facts that C'(A) is the convex hull of P(A) and A
is contained in C'(A). u

Proposition 10 Let A : [a,b] — R? be a supported arc. For every € > 0, there erists a
subarc A" of A such that A(a) € A’ and |7(A")| < e.

Proof: Let a,,...,a; be as in the proof of Proposition 9. Since the supporting sectors at the
a’s intersect in a bounded region, in particular I74(ag) intersects rr4(a;) (see Figure 12(a)).
Let B be the subarc of A between ay and a;. The angle o between Ir4(ag) and 774(aq)
shown in Figure 12(a) is equal to |7(B)|, and |7(B)| < 180°.

It is not hard to see that there exists a point p; € B distinct from ag and a; such that the
line [ parallel to line segment aga; is a supporting line of B at p; (see Figure 12(b)). [Proof:
Consider the function d which associates with each point of B its perpendicular distance to
line segment apa;. Since d is a continuous function, and B is a compact set, there is a point
of B at which d attains its maximum value. Evidently the line through any such point p;
parallel to aga; must be a supporting line of B.]

The angle 8 between Ir4(ag) and [ is equal to ap(ag), the angle of the supporting sector
op(ag). Let By be the subarc of A with endpoints ay and p;. Then S is the turn of B;.

Let a; = by, by, ... be a sequence of points of B that converge to ag (in the standard
Euclidean distance on the plane). Let p; be determined for each b;, ¢ > 1, in the same way
that p; was determined for by = a;, and let B; be the subarc of B with endpoints ag and p;.
Then 7(B;) = ag,(ao).

Since the left derivative of A at ag exists (Theorem 1), rays agb; approach Ir4(ag) if b,
approaches ay. Consequently, the angle ap,(ag) goes to 0 if b; approaches ay. Therefore, for
every € > 0, there exists an ¢ such that |7(B;)| < e. u
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(b)

Figure 12: Steps in the proof of Proposition 10.

6.3 Tame Arcs

Let T : [a,b] — IR? be a tame arc (or in particular a tame simple closed curve). Then 7" can
be divided into a finite number of supported arcs, i.e., there exist points ty < ... < t,,, € [a, D]
with ¢; = a and t,, = b such that T; = T([t;, t;11]) is supported for i = 0,...,m — 1. Let O
denote concatenation of polygonal arcs. With every 7; we can associate a simple polygonal
arc P(T;) such that Q' P(T;) is also a polygonal arc (not necessarily simple). This means
that all the P(7;) have a consistent order, i.e., we can traverse them from 7'(a) to T'(b)
following the directions of their vectors. This associates a polygonal arc

P(T) = Oi%' P(T7)

with 7. An example is given in Figure 13; here 7T is divided into two supported arcs
T = Ty UT, at the joint az. P(T}) has vertices xy, ..., x5, and P(T5) has vertices x5, T, T7-
The two polygonal arcsP(T;) and P(T5) have a consistent order in the sense that we can
traverse them from x( to x7 by following their vectors. The resulting polygonal arc associated
with T'is P(T) = P(T}) o P(T%).

Definition: We define the absolute turn of the tame arc 7T as
7(T) = |T(P(T))],

where P(T) is a polygonal arc associated with 7.

This definition is easy to apply if the right supporting ray of 7;_; and the left supporting
ray of T; do not coincide at their common endpoint . When the rays are collinear, however,
as shown in Figures 14(a) and (b), then vectors v and w of P(T') that are contained in these
rays and that have = as their common vertex are collinear and point in opposite directions.
In this case, neither of the rules shown in Figure 7 applies to = as a vertex of P(T). It is
clear that the absolute value of the turn 7(z) with respect to P(T) is 180°, but it is not
immediately clear how to determine the sign of 7(x).

We shall now define the sign of 7(z) with respect to P(T'). Let v be the last vector of
P(T; 1) and w the first vector of P(T;). Clearly z € v Nw and 7(z) (in P(T)) is the angle
between v and w.
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Figure 14: For illustration purposes, the associated polygonal arcs are slightly translated.

At least one of the arcs 7T;_; and 7; is not a line segment, since otherwise 1" would not
be a simple arc (we would have v = T; 1, w =T}, and v and w would coincide near z).

If one of T;_; and T; is a line segment, say T;_1, then 7(z) is defined to have the opposite
sign to the sign of 7(T;) (see Figure 15(a)).

Suppose now that both 7; | and 7; are not line segments. Let [ be the straight line
containing v and w. Since [ contains the right supporting ray of 7;_; and the left supporting
ray of T;, both T;_; and T; are contained in closed half-planes determined by (. If 7;_; and
T; are contained in two different closed half-planes of [, then 7;_; and 7; must have the same
sign of turn (see Figure 15(b)). In this case, 7(z) is defined to have the opposite sign to the
sign of 7(T;).

It remains only to consider the case in which 7;_; and 7T; are contained in the same
closed half-plane of [. In this case 7(T;_1) and 7(T;) have opposite signs. If the convex hull
of T;_; contains a subarc of T; beginning at x, then 7(x) is defined to have the same sign as
the sign of 7(7;_1); otherwise, 7(z) is defined to have the same sign as 7(7;) (see Figure 15(c)).
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Figure 15: Defining the sign of 7(z) in the collinear case.

Proposition 11 The turn 7(T) of a tame arc T is uniquely defined, i.e., T(T) does not
depend on the subdivision of T into supported subarcs T;.

Proof: Since each inflection point of a tame arc T is necessarily a joint of T, it is sufficient
to show that the turn of a tame arc 7" that does not contain inflections is uniquely defined.
We prove this by induction on the minimal number of optional joints of 7T". If the minimal
number is zero, then T is supported, and the uniqueness of 7(7T") follows from the fact that
the turn of a supported arc is uniquely defined. We now assume that the turn is uniquely
defined for any tame arc whose minimal number of optional joints is at most n — 1.

Let T : [a,b] — IR? be a tame arc with the minimal number of optional joints n. Let
t1,...,t, be all the joints of T. Let sq,..., s, be any different set of joints of T". There
exists an ¢ such that the subarc T; = T'([t;,t;41) contains some of the joints si, ..., S, say
Sk, ---, 8- Since T; is supported, the turn of 7; determined with respect to joints sy, ..., s
is equal to 7(7;). By the induction assumption, the turn of 7'([a,t;) determined with re-
spect to $1, ..., S—1 is equal to the turn of T'([a, t;) determined with respect to ty,...,t;—1, and
the same applies to the turn of T'([¢;;1, b). Consequently, the turn 7(7") is uniquely defined. m

7 Classification of Points of a Tame Arc

In this section we use total turn concepts to classify inflection points and cusps of a tame arc
T. When we classify a given point x € T, we can always assume that z is a joint of 7" and
is a vertex of an associated polygonal arc P(T). We will characterize x using the turn angle
7(z) in P(T) and the signs of the turns of the supported subarcs T;_; and 7; (determined
with respect to P(7T')) such that z is the endpoint of 7;_; and the beginning point of T;.

We recall that = is a cusp if the union of the left supporting ray of 7;_; at z, lrr, ,(z),
and the right supporting ray of T; at x, rrr,(x), is not a straight line, i.e., either lry,_, ()
and rrr,(z) are not collinear or lry,_, () = rro,(z). We will show that € T is a cusp of a
tame arc T iff 7(z) # 0. Then we will show that z € T is a regular point of a tame arc T iff
7(T;-1), 7(T;), and 7(z) (in P(T')) have the same sign. For example, this is the case for z in
Figure 16(b), while z in Figures 16(a), (c), or (d) is an inflection point.

Theorem 5 z € T is a cusp of a tame arc T iff 7(x) # 0.
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Figure 16: A regular point (b) and three inflection points (a), (c), and (d).

Proof: Let P(T") be a polygonal arc associated with 7. Let v be the vector of P(T") whose
endpoint is z, and let w be the vector of P(T) whose beginning point is . Then clearly
z € vNw and 7(z) (in P(T)) is the angle between v and w. The theorem follows from
the fact that v is contained in the left supporting ray at = and w is contained in the right
supporting ray at x. [ ]

Theorem 6 = € T is a reqular point of a tame arc T iff there exist supported subarcs T; 1
and T; of T such that x is the endpoint of T;—1 and the beginning point of T;, and 7(T;-1),
7(T;), and 7(x) (in P(T)) have the same sign* (see Figure 16(b)).

Proof:

“=": There exists a supported subarc A C T such that x is interior to A. Let T;_; and
T; be two subarcs of A such that x is the endpoint of 7;_; and the beginning point of 7;
and A =T, UT;. Since T;_; and T; are supported (non-degenerate) subarcs of A, 7(T;_1),
7(T;), and 7(z) have the same sign as 7(A).

“<”: If |7(x)| = 180°, it follows from the definition of 7(z) in Section 6.3 that 7(7;_1), 7(7),
and 7(z) cannot have the same sign. Therefore, we can assume that |7(x)| < 180°.

By Proposition 10, there exists a subarc 7;_; of T;_; containing x whose absolute turn
is arbitrarily small, and the same holds for 7;. Therefore, we can assume that |7(7;_1) +
7(T;) + 7(z)| < 180°.

We show that the arc R = T;_; o T} is supported. i.e. that there is a supporting line of
R at any point y of R. Without loss of generality, we can assume that y € T;_;.

Let P(T;—1) and P(T;) be polygonal arcs associated with 7; ; and T; such that y €
P(T;_1). Then P(R) = P(T;_1)o P(T;) is associated with R. We know that |7(P(R))| < 180°
and that P(R) turns in one direction. Therefore, P(R) is a convex (i.e., supported) polygonal
arc.

Let conv denote the convex hull operator. From Proposition 9 it follows that 7;_; C
conv(P(T;_1)) and T; C conv(P(T;)). Since conv(P(T;_1)) C conv(P(R)) and conv(P(T;)) C
conv(P(R)), we obtain R = (T;_;0T;) C conv(P(R)). Since y € P(R), there is a supporting
line of CH(P(R)) at y, and therefore there is a supporting line of R at y. n

“Here we consider the sign of a turn of 0° as both positive and negative.

18



8 Digital Supportedness

In this section we extend our theory of supported arcs to supported digital arcs. Every digital
arc is tame, since it contains a finite number of points, and therefore, it can be decomposed
into a finite number of supported digital arcs. Therefore, based on the following results, the
total turn of digital arcs can be defined in the analogous way to our continuous definition
for tame arcs. The total turn of digital arcs can be then used in digital picture processing
to determine the total curvature of digital object boundaries. Moreover, the classification
of significant points stated in Theorems 5 and 6 can be applied for shape analysis of digital
arcs.

We interpret Z? as the set of points with integer coordinates in the plane IR%. Any
finite subset S C Z* will be called a digital set. A 4-boundary bd,A of a digital set A
is a set of points in A which have at least one 4-neighbor not in A, i.e., bdyA = {a € A :
Ni(a) N A¢ # B}, where A¢ denotes the complement of A in Z* and, for a point (z,y) € Z?,
Ni((z,y)) ={(z,9), (z + 1,9), (z - L,y), (z,y + 1), (z,y = 1) }.

A digitization schema that is commonly used in the literature is subset digitization,
where the subset digitization of a planar set X is defined as the set of points with integer
coordinates that are contained in X:

SD(X)={seZ’:s€e X}.

This schema can be easily extended to boundaries of planar sets. The result is referred to
as object boundary quantization, and is defined as follows:

Dopo(bdX) = bd;SD(X),

where bdX is the standard topological boundary of a planar set X. The motivation for
object boundary quantization is that in computer vision digital curves generally occur as ob-
ject boundaries. In particular, digital lines are considered to be the boundaries of digitized
half-planes.

Definition: A set P C Z? is called a digital half-plane if there exists a real closed half-
plane HP C IR? such that SD(HP) = P. A set L C Z? is called a digital straight line if
L = bd,P for some digital half-plane P.

The black points in Figure 17(a) represent a digital half-plane, since they are obtained
by the subset digitization of the gray half-plane. The black points in Figure 17(b) represent
a digital line, since they are obtained by the digitization Dopg of the straight line, which is
the boundary of the gray half-plane. Thus, L C Z? is a digital straight line if there exists a
real straight M line such that L = Dopg(M).

We can restate the definition of a (continuous) supporting half-plane given in Section 2
in the following way:

Let S be a subset of the plane, and p a point of S. A closed half-plane P is a supporting
half-plane of S at p if S C P and p € bdP, where bdP denotes the boundary of P (i.e., the
boundary line).
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Figure 17: The black points represent a digital half-plane in (a) and a digital line in (b).

We use exactly this definition to define a supporting half-plane in the digital case:

Definition: Let S be a subset of Z? and p a point of S. A digital half-plane P is called a
(digital) supporting half-plane of S at p if S C P and p € bdyP, In this case, point p
belongs to the digital line L = bdyP. The line L is called a (digital) supporting line of S
at p.

Thus, P is a (digital) supporting half-plane means that there exists a real half-plane H (p)
such that S C H(p) and p € bdyP, where P = SD(H(p)).

Similarly, we can also directly transform the definition of a supported set to the digital
domain:

Definition: A subset S of Z? is (digitally) supported if, for every p € S, there exists at
least one digital supporting half-plane of S at p.

For example, the set of black points in Figure 18(a) is digitally supported, since but not
in (b), since there do not exist supporting half-planes at points p and g.
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Figure 18: The set of black points is digitally supported in (a) but not in (b).

Theorem 7 allows us to give a new definition of a convex digital set as a digital set
whose 4-boundary is digitally supported (e.g., see Figure 18(a)).

Theorem 7 A finite set S C Z? is digitally supported iff there exists a compact and convez
set B C IR? with nonempty interior such that S C bdySD(B).

Proof:

“=” Let S C Z? be digitally supported. For every p € S, there exists a real half-plane H (p)
such that S C SD(H(p)) and p € bdySD(H (p)). Note that S C SD(H(p)) iff S C H(p).

Let B=N{H(p) : p € S}. B is a closed and convex set as a finite intersection of real
half-planes, and S C B. Since S is finite, we can assume that B is bounded. (If this were
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not the case, we can always find a convex, closed, and bounded subset of B that contains
S.)

If the interior of B is empty, then B is a line segment, since a bounded convex set with
empty interior is a line segment. In this case, we can replace B by a compact and convex
set with nonempty interior (e.g., a rectangle) that contains exactly the same points of Z? as
B. Therefore, we can assume that the interior of B is nonempty.

Thus, B is a compact and convex set with nonempty interior such that S C B. Con-
sequently, S C SD(B). Since, for every p € S, p € bd;SD(H(p)), there exists ¢ € Z* a
4-neighbor of p such that ¢ ¢ SD(H (p)), and therefore ¢ ¢ SD(B). We obtain p € bd,SD(B)
for every p € S. Hence S C bd,SD(B).

“<” Let S C bdySD(B), where B is a compact and convex set with nonempty interior.
It is sufficient to show that Dopg(bdB) = bd,SD(B) is digitally supported. If SD(B) is
the empty set, then bdySD(B) is trivially digitally supported. Therefore, we assume that
SD(B) is nonempty.

Let p € bdsSD(B) be any point. Then there exists a 4-neighbor ¢ € Z* of p such that
q ¢ SD(B), and therefore q ¢ B.

Let x be a closest point to ¢ in B. Let L be the straight line through = perpendicular to
line segment xq, and let HP be the real closed half-plane of L that does not contain ¢ (see
Figure 19).
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Figure 19: HP is a (continuous) supporting half-plane at z.

Since no point of B is closer to ¢ than x and B is convex, B is contained in HP. Thus, HP
is a supporting half-plane at x of B.

Since p € HP and ¢ ¢ HP, we have p € bd,SD(HP). We also have that SD(B) C
SD(HP), and consequently bd,SD(B) C SD(HP). Thus, SD(HP) is a digital supporting
half-plane of bd;SD(B) at p. u

We recall that C* denotes the closed bounded set surrounded by a simple closed curve
C in the plane. In particular, we have C' = bdC*. We define Dppq(C) = bdsSD(C*).

Corollary 1 A finite set S C Z? is digitally supported iff there exists a supported simple
closed curve C C IR? such that S C Dopg(C).

Proof:

“=” By Theorem 7, there exists a compact and convex set B C IR? with nonempty interior
such that S C bd;SD(B). Since the boundary of a bounded convex set with nonempty
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interior is a simple closed curve (e.g., see [6], Theorem 32), we obtain that C' = bdB is a
supported simple closed curve. Since C* = B, and consequently Dopg(C) = bdsSD(B), we
obtain S g DOBQ (C)

“«” This is a special case of Theorem 7. [ ]

By Corollary 1, supported digital sets correspond to supported continuous sets. Thus,
we can extend our theory of tame arcs to digital arcs. In particular, we can define the total
turn of digital arcs in the analogous way to our continuous definition.

9 Conclusions and Extensions

The results of this paper can be summarized as follows:

An arc (not necessarily simple) is called tame if it is the concatenation of a finite set of
supported (simple) arcs; for example, a polygonal arc is tame. For tame arc we gave simple
definitions of significant points that extend the classical definitions in differential geometry.
For example, a nonendpoint of a tame arc which is not a interior to any supported subarc
is called an inflection. If a tame arc is differentiable, its curvature must change sign at an
infection point. Since a tame arc does not have to be differentiable at an inflection point,
this simple definition extends the corresponding definition in differential geometry. We have
also shown that tame arc can have only finitely many inflections.

Although we do not use the standard tools of differential geometry that are based on
limits of infinite sequences of points, we are able to compute the total curvature (which we
call the (total) turn) of tame arcs. We showed that the total absolute turn of a tame arc
must be finite.

We have extended our theory of tame arcs to digital arcs. Since every digital arc contains
a finite number of points, it is tame. By these results, we can use our definition of the total
turn to calculate the total curvature of digital arcs. First we decompose the digital arc (which
is usually the boundary of some digital object) into convex subarcs, then we calculate the
total curvature of each subarc. We expect that the total curvature calculated in this way can
give more exact curvature estimation than the local curvature operators commonly used in
image analysis. Since we apply a global definition of total curvature, which is not restricted
to any fixed n X n mask, its accuracy is not limited by the size of the local mask as is the
case for all local curvature operators. Moreover, the classification of significant of a tame
arc can be applied for shape analysis of digital arcs.

The ideas in this paper can be extended in several ways; we plan to pursue these exten-
sions in future papers. First we plan to apply our theoretical results to analyze the shape of
digital arcs.

Further we plan to extend our results to three-dimensional (Euclidean) space. We can
define a supporting plane to a set S at a point p as a plane P through p such that S lies
in one of the closed half-spaces bounded by P. It is not hard to see that a set which has a
supporting half-plane at every point must be contained in the boundary of its convex hull.
There are still many possibilities for such a set; even if we require it to be closed, bounded,
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and connected, it can be arc-like, surface-patch-like, or a combination. It would be of interest
to develop a theory of supported sets in three dimensions, analogous to the planar theory
developed in this paper.

10 Appendix

Here we give precise definitions of the left and right supporting rays.

Let A : [a,b] — IR? be an arc. Let p = A(x) for some point z € (a,b). Let r <
min{d(A(z), A(a)),d(A(z), A(b))}, where d is Euclidean distance in the plane. Then the
circle C'(p,r) with the center p and radius r intersects arc A in at least two points (see
Figure 20(a)). This follows from the fact that a circle is a Jordan curve and p is inside the
bounded region enclosed by C(p, r) while the arc endpoints A(a) and A(b) are outside of this
region. Let z_ € (a,x) be a point such that A(z_) € C(p,r)NAand A((z_,z))NC(p,7) =0
(i.e., z_ = sup{y € (a,x) : A(y) € C(p,r)N A}; since the set C(p, )N A is compact, we have
A(z_) € C(p,r) N A}). Similarly, let ;. € (z,b) be a point such that A(z;) € C(p,r) N A
and A(z,z.)NC(p,r) = 0.

Ira (A@)

A(b
AQ (b)

(b)
Figure 20:

Since A([z_,x4]) is a subarc of A, it is contained in the sector o4(p). In particular, the
points A(z_) and A(zy) lie on C(p,r) Noa(p).

The ray bounding o4(p) that can be reached from point A(z_) while traversing C(p, ) N
o4(p) without going through A(x) will be denoted by Ir4(p) and called the left supporting
ray of A at p (see Figure 20(a)). Similarly, the ray bounding o4 (p) that can be reached from
point A(x) while traversing C(p,r) N o4(p) without going through A(z_) will be denoted
by r74(p) and called the right supporting ray of A at p.

We next show that if A is supported, Ir4(p) and r74(p) do not depend on the radius
of the circle C(p,r). To see this, note that the subarc A([z_, z]) is contained in the sector
determined by the ray [ra(p) and the line segment A(z)A(z_) (see Figure 20(a)), since the
interior of triangle A(z_)A(z)A(z;) cannot contain any points of arc A (Proposition 15,
below). If ' < r, the point A(z’ ) determined with respect to circle C(p, ') must thus be
contained in this sector; therefore, the ray lr4(p) can be reached from A(z" ) along C(p,r’)
without going through point A(z'). A similar argument applies for r74(p).

23



It remains to define the left and right supporting rays at the endpoints of arc A. This
can be done even if A is equal to the line segment A(a)A(b) (where a # b); the angle a4 (p)
is 0° if p = A(a) or A(b), and 180° otherwise. In the latter case, 04 (p) cuts off a semicircle
on C(p,r), and the subarcs A(z)A(x_), A(x)A(x+) coincide respectively with rays Ir4(p),
rra(p). In the former cases, o(p) is a ray, and it coincides with Ir4(p) = rra(p) if p = A(a)
or p = A(b).

Now suppose that A is different from line segment A(a)A(b). As we see in Figure 20(b), at
A(a) one of the bounding rays of 04(S(a)) is just the line segment A(a)A(b) by Proposition
4. We define this ray to be Ir4(A(a)), and the other bounding ray of the sector o4(A(a)) to
be r74(A(a)); and vice versa at A(b). The foregoing discussion gives us

Proposition 12 Let A : [a,b] — IR? be a supported arc. Let A’ be the subarc A([p, c|), where
a <p<c<b. The subarc A" is contained in the sector defined by the right supporting ray
rr4(A(p)) and the line segment A(p)A(c) (see Figure 21). The analogous statement holds
for the left supporting ray.

rr Ap)
A(c)

A(b)
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Figure 21:
As a consequence of Proposition 12 we have

Proposition 13 Let A and A" be as in Proposition 12. Then rr4(A(p)) = rra(A(p)). The
analogous statement holds for the left supporting ray.

Proof: Clearly, A(p) = A'(p). Since A’ is a subarc of A, supporting sector o4/ (A(p)) of A’ is
contained in 04 (A(p)). Suppose 174(A(p)) # 174 (A(p)); then there would be a point A(t)
of Ain 04(A(p)) \ 0a(A(p)) which lies between rr4(A(p)) and rra(A(p)). Consider the
triangle A(p)A(c)A(t) (see Figure 22). Since A is supported, no point of A can lie in the
interior of this triangle (Proposition 15, below). But by Proposition 12, A([p, ¢]) is contained
in the angular sector spanned by line segment A(p)A(c) and r74(A(p)); hence there exist
parts of A in the interior of the triangle, contradiction. [ ]

As a simple consequence of Proposition 13, we obtain

Proposition 14 Let A be a supported arc and A’ a proper subarc of A. If p is not an
endpoint of A', then o4/ (p) = oa(p). If p is an endpoint of A, then o (p) is a proper subset
of oa(p)- [
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Figure 22:

The following simple but general characterization of supporting lines was used in proving
the above results.

Proposition 15 A planar set S has a supporting line at p € S iff there do not exist three
points q,r,s € S such that p lies in the interior of the triangle spanned by q,r, and s.

Proof:

“=-:" If p is in the interior of such a triangle, any line [ through p must intersect an interior
point of at least one side if the triangle, so that the endpoints of that side cannot lie in the
same closed half-plane defined by [ (see Figure 23(a)).

Figure 23: A criterion for the existence of a supporting line at P.

“«: Conversely, the set of rays joining p to all the other points of S is contained in some
closed angular sector with vertex p, possibly with vertex angle 360°. The intersection of all
such sectors is also a closed angular sector with vertex p, say with vertex angle a.

If @ < 1807, there is a supporting line of S at p. If o > 180° (see Figure 23(b)), then
there exist three points ¢,7, s € S such that p is in the interior of the triangle spanned by
q,r, and s. [ |
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