IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.22, NO. 10, OCTOBER 2000 1

Shape Similarity Measure Based on
Correspondence of Visual Parts

Longin Jan Latecki and Rolf Lakamper

Abstract—A cognitively motivated similarity measure is presented and its
properties are analyzed with respect to retrieval of similar objects in image
databases of silhouettes of 2D objects. To reduce influence of digitization noise,
as well as segmentation errors, the shapes are simplified by a novel process of
digital curve evolution. To compute our similarity measure, we first establish the
best possible correspondence of visual parts (without explicitly computing the
visual parts). Then, the similarity between corresponding parts is computed and
aggregated. We applied our similarity measure to shape matching of object
contours in various image databases and compared it to well-known approaches
in the literature. The experimental results justify that our shape matching
procedure gives an intuitive shape correspondence and is stable with respect to
noise distortions.

Index Terms—Shape representation, shape similarity measure, visual parts,
discrete curve evolution.
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1 INTRODUCTION

A shape similarity measure useful for shape-based retrieval in
image databases should be in accord with our visual perception.
This basic property leads to the following requirements:

1. A shape similarity measure should permit recognition of
perceptually similar objects that are not mathematically
identical.

2. It should abstract from distortions (e.g., digitization noise

and segmentation errors).

It should respect significant visual parts of objects.

4. It should not depend on scale, orientation, and position of
objects.

(95}

If we want to apply a shape similarity measure to distributed
image databases, where the object classes are generally unknown
a priori (e.g., in the Internet), it is necessary that:

5. A shape similarity measure is universal in the sense that it
allows us to identify or distinguish objects of arbitrary
shapes, i.e., no restrictions on shapes are assumed.

In this paper, we present a shape similarity measure that
satisfies requirements 1 through 5. We demonstrate this by
theoretical considerations, experimental results, and by compar-
ison to the existing similarity measures.

The main contribution of this paper is presented in Sections 3
and 4, where our shape similarity measure is defined for object
contours. Since contours of objects in digital images are distorted
due to digitization noise and segmentation errors, it is desirable to
neglect the distortions while, at the same time, preserving the
perceptual appearance at the level sufficient for object recognition.
Therefore, our similarity measure is applied to contours whose
shape has been previously simplified by a discrete curve evolution.
This allows us:
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e to reduce influence of noise and
e  to simplify the shape by removing irrelevant shape features
without changing relevant shape features,
which contributes in a significant way to the fact that the similarity
measure satisfies requirements 1 and 2. Observe that our discrete
curve evolution is context sensitive since whether shape compo-
nents are relevant or irrelevant cannot be decided without context.
Our discrete curve evolution is presented shortly in Section 2
(more detailed presentations are given in [6], [7]).

In [6], we showed that significant visual parts become maximal
convex arcs on an object contour simplified by the discrete curve
evolution. Since we apply our similarity measure to contours
simplified by the curve evolution and the similarity measure
establishes the best possible correspondence of maximal convex/
concave arcs, it follows that our similarity measure respects
significant visual parts (requirement 3). Since requirements 1 and 3
are of a cognitive nature, they should be justified by cognitive
experiments. We achieve this in Section 5 by relating our shape
similarity measure to well-known measures that have been
justified by cognitive experiments.

Requirements 4 and 5 are of pure mathematical nature and their
satisfaction can be shown by simple arguments. The satisfaction of
requirement 5 follows from the fact that we represent object
boundaries as simple closed polygonal curves and that our shape
similarity measure allows us to compare any two such curves. We
simply obtain the polygonal curves from the boundary chain code
(without any smoothing or other preprocessing) of segmented
objects in digital images. Thus, every object contour in a digital
image can be represented as a simple closed polygonal curve (with
a possibly large number of vertices) without loss of information
and without any additional computation.

Our approach to define a shape similarity measure is related to
the one in Arkin et al. [1], where comparison of polygonal curves is
based on L, distance of their turn angle representations (which we
call tangent space representations). A more detailed comparison is
given at the end of Section 4. The main difference is that our shape
similarity measure is based on a subdivision of objects into parts of
visual form. According to Siddiqi et al. [14], part-based representa-
tions allow for robust object recognition and play an important role
in theories of object categorization and classification. There is also
strong evidence for part-based representations in human vision,
see, e.g., [14], [4]. Hoffman and Richards [3] provide strong
evidence that contours are psychologically segmented at negative
curvature minima.

2 DiSCRETE CURVE EVOLUTION

Since contours of objects in digital images are distorted due to
digitization noise and segmentation errors, it is desirable to neglect
the distortions while at the same time preserving the perceptual
appearance at the level sufficient for object recognition. An obvious
way to neglect the distortions is to eliminate them by approximat-
ing the original contour with one that has a similar perceptual
appearance. To achieve this, an appropriate approximation (or
curve evolution) method is necessary. We achieve this through a
novel method for evolution of polygonal curves.

Since any digital curve can be regarded as a polygon without
loss of information (with possibly a large number of vertices), it is
sufficient to study evolutions of polygonal shapes. The basic idea
of the proposed evolution of polygons is very simple:

e Inevery evolution step, a pair of consecutive line segments
s1, 82 is substituted with a single line segment joining the
endpoints of s; U so.

The key property of this evolution is the order of the substitution. The
substitution is done according to a relevance measure K given by:
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Fig. 1. A few stages of the proposed curve evolution. A distorted version of the contour in WWW page http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html.
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where ((s1, s2) is the turn angle at the common vertex of segments
s1,s2 and [ is the length function normalized with respect to the
total length of a polygonal curve C. The main property of this
relevance measure is the following;:

e The higher the value of K(si,s2), the larger is the
contribution to the shape of the curve of arc s; U s.

A cognitive motivation of this property is given in [6]. A detailed
description of our discrete curve evolution can be found in [7].
Online demonstrations can be viewed on our WWW site [8]. A few
example stages of the discrete curve evolution are shown in Fig. 1.

Our curve evolution method does not require any control
parameters to achieve the task of shape simplification, i.e., there
are no parameters involved in the process of the discrete curve
evolution. However, we clearly need a stop parameter, which is
the number of iterations the evolution is performed. This
parameter is automatically determined in accord with our visual
perception by the procedure described at the end of Section 4.

3 SHAPE SIMILARITY MEASURE

In this section, we define our shape similarity measure. This
measure is applied to contours which have been previously
simplified by the discrete curve evolution. The appropriate
evolution stage is selected for each shape and then the similarity
is computed for the obtained instances of the shapes.

Our similarity measure profits from the decomposition into
visual parts based on convex boundary arcs [6]. The key idea is to
find the right correspondence of the visual parts. We assume that a
single visual part (i.e., a convex arc) of one curve can correspond to
a sequence of consecutive convex and concave arcs of the second
curve, e.g., part number 0 of the top-left fish contour in Fig. 2. This
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Fig. 2. The corresponding arcs are labeled by the same numbers.

assumption is justified by the fact that a single visual part should
match its noisy versions which can be composed of sequences of
consecutive convex and concave arcs or by the fact that a visual
part obtained at a higher stage of evolution should match the arc it
originates from. Since maximal convex arcs determine visual parts,
this assumption guarantees preservation of visual parts (without
explicitly computing visual parts).

In this section, we assume that polygonal curves are simple, i.e.,
there are no self-intersections and they are closed. We also assume
that we traverse polygonal curves in the counterclockwise direction.

Let convconc(C) denote the set of all maximal convex or
concave subarcs of a polygonal curve C. Then, the order of
traversal induces the order of arcs in convcone(C).

Since a simple one-to-one comparison of maximal convex/
concave arcs of two polygonal curves is of little use, due to the fact
that the curves may consist of a different number of such arcs and
even similar shapes may have different small features, we join
together maximal arcs to form groups:

A group g of curve C' is a union of a (nonempty) consecutive
sequence of arcs in convconc(C). Thus, g is also a subarc of C. We
denote groups(C) as the set of all groups of C. We have
conveonc(C) C groups(C). A grouping G for a curve C is an ordered
set of consecutive groups G = (go, - - . , gn—1) for some n > 0 such that

®  GiNGiti(modn) is a single line segment for ¢ =0,....,n — 1.

Since any two consecutive groups intersect in exactly one line
segment, the whole curve C is covered by G. We denote the set of
all possible groupings G of a curve C as G(C). Fig. 2 shows
example groupings of the given contours, where each group is
assigned a different number.

Given two curves Cy, Cy, we say that groupings G; € G(Cy) and
G € G(Cy) correspond if there exists a bijection f: G} — G3 such
that

1. f preserves order of groups and
2. Forall z € Gy, z € convconc(Cy) or f(x) € conveonc(Cy).

L=,
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We call the bijection f a correspondence between G; and Gs. We
denote the set of all corresponding pairs (G1,G2) in G(C) x G(Cs)
by C(C,Cs). Two example correspondences are shown in Fig. 2.
The condition that any f is a bijection means that both curves are
decomposed into the same amount of groups. Condition 2 means
that at least one of corresponding groups z € G; or f(z) € Gy is a
maximal (convex or concave) arc. The reason is that we want to
allow mappings between one-to-many maximal arcs or many-to-
one maximal arcs, but never between many-to-many maximal arcs.
Since maximal convex arcs determine visual parts, condition 2
guarantees preservation of visual parts (without explicitly comput-
ing visual parts). Condition 2 also implies that every maximal
(convex or concave) arc in a higher stage of abstraction will match
to the consecutive sequence of arcs it originates from.
A similarity measure for curves C, C; is defined as

SC(CH7 Cz) = min{ Z Sa(x, f(Gl,Gz)(x)) : (Gl, Gz) € C(Cl, Cz)},
re€Gy
(2)

where f, @,) is the correspondence between G and G» and S, is a
similarity measure for arcs that will be defined in the next section.
To compute S.(Cy,C5) means to find in the set C(Ci,C,) of all
corresponding groupings a pair of groupings for which the sum of
the differences between the corresponding groups S, (z, f(g, ;) ())
is minimal. The task of computing the similarity measure defined
in (2) can be formulated as a problem of computing the global
minimum: Given a function

MX,Y) = Su(@, fxy) (@)
reX
that assigns a group matching value to every corresponding pair
(X,Y) € C(Ch, Cy) related by the correspondence f(xy), find a pair
(G1,Gy) € C(C1,C5) for which M(Gy,Gy) is minimal, i.e.,
M(G1,Gy) < M(X,Y) for all elements (X,Y) € C(Cy, Cy).

The similarity measure defined in (2) is computed using
dynamic programming. Numerous experimental results show that
it leads to intuitive arc correspondences, e.g., see Fig. 2. The
experimental results are described in Section 5.

4 TANGENT SPACE REPRESENTATION

The goal of this section is to define the similarity measure S, for
arcs that is part of definition of our shape similarity measure in
Section 3. As mentioned in the introduction, any digital curve C'
can be interpreted as a polygonal curve with a possibly large
number of vertices without loss of information.

We assign to every polygonal curve a tangent function, which is
a step function. We use the tangent function as a basis for the
proposed similarity measure of simple polygonal arcs. Let C be a
polygonal curve. We treat it as a function C : [0,1] — IR?, i.e., the
length of C'is rescaled to 1. The tangent function of C (which is
also called a turning function) is a multivalued function 7'(C) :
[0,1] — [0,27] defined by T(C)(s) = C’_(s) and T(C)(s) = C',(s),
where C” (s) and (', (s) are left and right derivatives of C. For
example, see Fig. 3. Clearly, only if C(s) is a vertex of the polygon
C' (s) # C'.(s). The y-difference between two adjacent steps of the
tangent function represents the turn angle of the corresponding
pair of line segments.

Now, we define the similarity measure for arcs. Let ¢,d be
simple polygonal arcs that are parts of closed curves C,D. We
denote by T'(c),T(d) their tangent functions, uniformly scaled so
that their projections on the x-axis m,(7'(c)) and 7, (T'(d)) both have
length one. The arc similarity measure is given by (e.g., see Fig. 3)
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Fig. 3. Two polygonal curves, say ¢ and d, their tangent functions 7'(c), T'(d), and
the distance Dy, (7'(c), T'(d)) of the tangent functions.

Sa(e,d) =

( /0 l(T(c)(s) —T(d)(s) + 60) ds) max(l(c),l(d))maX<%v%)v

®3)
where [ is the relative arclength of an arc with respect to the
boundary length of the curve and 6 is defined below. The integral
in (3) is weighted with the arc length penalized by the difference in

length of the corresponding parts. For example, if I(c) > I(d), then
the scaling term is equal to I(c) %, where [(c) scales the value of
the integral by the relative arclength of arc ¢ with respect to the

I(c)
I(d)

difference of arcs c and d.
The constant 6, is a translation of 7'(d) that minimizes the

length of curve C' and is the penalty for the relative length

integral, i.e.,

| e -1 + 07 ds -
. ! 2
inf )/0 (T(e)(s) = T(d)(s) + 6)" ds.

0el0,27

The constant 6, exists and is given by Lemma 3 in Arkin et al.
[1]. Observe that we apply measure (3) with the restriction that
¢ € conveonc(C) or d € convconc(D).

Now, we describe the procedure that determines the stop
parameter, ie., a stage at which the curve evolution halts. The
evolved contours obtained at this stage are used as input to our

shape similarity measure.

Let P = P° ..., P™ be polygons obtained from a polygon P in the
course of discrete curve evolution such that P is the first convex
polygon.

For i = m with a step —1 do:

The curve of an abstraction level P! is segmented into maximal
convex/concave parts. These parts are compared to their corre-
sponding parts on the original polygon P°, where the correspond-
ing parts are the ones having the same endpoints. The comparison
is done using the S;-measure. If the comparison of a single part in
P leads to a value higher than a given threshold s, the shape P’ is
abstracted too much and the previous abstraction level P! is
taken.



Fig. 4. A comparison of tangent functions of two contours based on Arkin et al. [1].

5 COMPARISON TO KNOWN SIMILARITY MEASURES

We concentrate on comparison to universal similarity measures
that are translation, rotation, reflection, and scaling invariant. This
excludes, for example, Hausdorff distance, which is universal but
is not rotation, reflection, and scaling invariant.

As stated in Section 1, our approach to defining a shape
similarity measure is related to the one in Arkin et al. [1], where
L, distance of tangent functions is used for comparing polygonal
shapes. The main difference of our approach is that we use
L, distance for comparing tangent functions of parts of polygonal
shapes, which makes our approach significantly more robust with
respect to nonuniform distortions. This is illustrated by comparing
the two shapes in Fig. 4. Since the tangent functions of both shapes
are scaled to the same length, the local distortions make it
impossible to overlay these functions in such a way that the
corresponding parts are on top of each other. This results in a large
similarity value of the similarity measure of Arkin et al. [1].

To compute our shape similarity measure, we first establish the
best possible correspondence of the maximal convex/concave arcs.
The corresponding maximal convex/concave arcs are labeled with
the same numbers 0 to 3 in Fig. 5. The maximal convex arc 3 of the
first shape correctly corresponds to the part 3 of the second shape
(which is the part between lines 2 and 3 on the tangent function). In
our approach, the comparison of tangent functions is done for each
pair of corresponding parts separately. We scale each correspond-
ing pair to the same length 1 and compute the distance of the local
tangent functions obtained in this way. This correctly results in a
small value of our similarity measure for the two shapes. This
example also demonstrates that our similarity measure satisfies
requirements 1, 2, and 3 described in Section 1. We want to stress

—
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that the shape of the distorted object in this example was not
simplified before the comparison.

Our shape similarity measure was throughly tested on the
MPEG-7 Core Experiment CE-Shape-1 for shape desciptors. We
report on this in [9]. Further, we compared our approach to
retrieval of similar objects with a similarity measure based on
curvature scale space in Mokhtarian et al. [10]. The curvature scale
space representation is obtained by curve evolution guided by
diffusion equation [11]. The similarity measure in [10] is applied to
a database of marine animals in which every image contains one
animal. We applied our similarity measure to the same database.
The results, which can be viewed on our home page [8], are very
similar, but not identical to the results in [10].

We compared the results of our approach with the approach
presented in Siddiqi et al. [13], which is based on a hierarchical
structure of shocks in skeletons of 2D objects. In this approach,
object shape is represented as a graph of shocks. The similarity of
objects is determined by a similarity measure of the graphs of
shocks. Although the shape representation in [13] is not based on
boundary curves, the results of our similarity measure are very
similar to the results in [13]. These results can be viewed on our
home page [8].

An interesting approach to establishing desirable properties of
shape similarity measures is given in Basri et al. [2]. The desirable
properties are illustrated and tested on three proposed similarity
measures: spring model, linear model, and continuous deforma-
tion model. These models measure deformation energy needed to
obtain one object from the other. The calculation of deformation
energy is based on (best possible) correspondence of boundary
points and local distortions of corresponding points as a function

L |

I
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Ii

d I

Fig. 5. The gray region shows the side of the first shape that should correspond to the distorted side of the second shape.
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Fig. 6. The more vertices a regular polygon has, the more similar to a circle it is.

Z16 874

—

Fig. 7. Bending at a part boundary should imply fewer changes than bending in the

middle of a part.

of local curvature differences. Thus, the calculation of the three
measures requires local computation of curvature.

We demonstrate that our measure yields desirable results in
accord with experiments proposed in Basri et al. [2]. In Table 1 in
[2], an experiment with regular polygons is demonstrated. The
intuitive idea is that the more vertices a regular polygon has, the
more similar to a circle it is. The results of our similarity measure
on images from Table 1 are shown in Fig. 6. It can be easily
observed that our measure yields the desirable results.

Basri et al. [2] further argue that similarity measures should be
sensitive to structure of visual parts of objects. To check this
property, they suggest that bending an object at a part boundary
should imply fewer changes than bending in the middle of a part.
This property of our measure is illustrated in Fig. 7.

The similarity measures in Basri et al. [2] are obtained as the
integral of local distortions between corresponding contour points.
The authors themselves point out a counterintuitive performance of
their measures when applied to the objects like the ones in Fig. 8 ([2,
Fig. 17]). The H-shaped contour (Fig. 8a) is compared to two
different distortions of it. Although the shape (Fig. 8b) appears more
similar to (Fig. 8a) than the shape (Fig. 8c), the amount of local
distortion to obtain (Fig. 8b) and (Fig. 8c) from (Fig. 8a) is the same.
Therefore, all three measures presented in [2] imply that shapes

(a) (b) (©

Fig. 8. Our similarity measure yields results in accord with our visual perception:
Se((a), (b)) = 368 and S.((a), (c)) = 518.

(Fig 8b) and (Fig. 8c) are equally similar to (Fig. 8a). Basri et al. argue
that this counterintuitive performance is due to the fact that their
measures are based on contour representation of shapes, but the
performance of our measure clearly proves that this is not the case:

Our similarity measure is based on contour representation and
gives similarity values in accord with visual perception. Our
measure yields S.((a), (b)) = 368 and S.((a), (c)) = 518, i.e., Fig. 8b
is more similar than Fig. 8c to Fig. 8a. The main difference is that
our measure is not based on local properties, i.e., it is not based on
correspondence of contour points and their local properties, but on
correspondence of contour parts.

The approach described in Sclaroff [12] is based on distance to
object prototypes representing classes of shapes. Shape similarity is
computed in terms of the amount of strain energy needed to
deform one object into another. Therefore, the above discussion of
approaches based on deformation energy also applies to [12].
Additionally, the computation of the shape similarity in [12]
requires establishing direct point correspondence and shape
alignment, which is a highly nontrivial task. Sclaroff uses
Hausdorff distance [5] to achieve this task in his experiments.

6 CONCLUSIONS

This paper presents novel techniques for shape-based object
recognition, especially developed to match the discrete nature of
digital image data. We developed a shape similarity measure that
fulfills necessary requirements for cognitively motivated shape
similarity measures. These requirements are proposed by the
authors (see Section 1) and by Basri et al. [2] (see Section 5). We
applied our measure to retrieval of similar objects in a database of
object contours, see Fig. 9. The user query can be given either by a
graphical sketch or by an example silhouette. Numerous experi-
ments with various databases of real images and comparison to
known universal shape similarity measures justify an intuitive

Inage Database Version 1.0

il S

The Image Database

Please draw your shape here !

1

SEND !
Best Match: W Second: F

LA

Show Grouping | | Show Grouping 2 |

Thint: |62 Fourth: F Fith: | 5q
Show Grouping 3 = |

A query object

L leads to intuitive results

Fig. 9. Retrieval of similar objects based on our similarity measure.

The instance found,
corresponding parts
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shape correspondence and stability with respect to noise distor-
tions of our shape similarity measure.

The main strength of our shape similarity measure is that it
establishes the best possible correspondence of boundary parts
that are visually significant. A discrete evolution method that is
used as a prefilter for shape comparison is a basis for a shape
decomposition into visual parts.
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