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ABSTRACT
Map confidence, or map quality based on regional consis-
tency is an important measure to evaluate the quality of
robot maps. It is classically handled analyzing occupancy
grids, which is an unnatural choice if the map is not repre-
sented by data points, but by line segments. We define a
map-confidence measure that is tailored for segment based
maps, without leaving the compact data representation by
segments. The presented confidence measure is not based
on comparison to ground truth data, but evaluates the map
(ground truth free) based on map consistency.

1. INTRODUCTION AND APPROACH
The interest in robot mapping based on higher geometric

structures like linear elements is currently growing. Obvi-
ous advantages in runtime, memory efficiency and simpler
mid-level analysis capability make such mapping approaches
powerful competitors to the classic, point based techniques.
Computing the confidence in scans, and evaluating a global
map based on the confidence of aligned single scans in the
context of the global map is an important task in robot map-
ping. This paper gives an example, how map confidence can
be computed purely based on line segments. The presented
approach evaluates the confidence in each single segment; it
can be used to delete inconsistent segment data (’map clean-
ing’), as well as to score the quality of a given segment map
based on segment consistency.

The core algorithm was originally designed as a processing
module of a segment based robot mapping system (descrip-
tion of this system is part of a future publication). Its pur-
pose there is to clean intermediate mapping results, consist-
ing of a low number of aligned, segment based local maps,
from inconsistent or noisy segments. In a straightforward
manner, such a module can be extended to a global (or re-
gional) confidence measure: the more consistent segments
(in a certain region), the better.

An important design paradigm of the presented research
is not to leave the very efficient and compact data repre-
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sentation by segments. Such an approach leads to multiple
advantages compared to point/grid based methods:

• The segment based approach captures structural in-
formation. This information goes significantly further
than the information of object presence, contained in
raw point data. Figure 3, (b,c,d) shows examples: the
red segments are detected as noise. In point density
based confidence approaches like occupancy grids [2],
the original data points would not only be labeled as
correct (since the point density in this area is high),
but would have enhanced the confidence in this region.

• The segment based approach is fast. In indoor environ-
ments or urban outdoor environments, a typical scan
consists of n < 20 segments of sufficient length, while
the number of data points is typically one to two orders
of magnitude (factor 10 − 100) higher. This becomes
especially important when point relations between dif-
ferent scans have to be evaluated, which usually im-
plies algorithms with runtime between O(nlogn) and
O(n2).

• The segment based approach is memory efficient. Com-
pared to occupancy grids, the memory consumption is
significantly lower.

• The segment based approach is precise. Segment end-
points don’t have to be adjusted to a resolution pa-
rameter, hence there are no quantization errors. This
is in contrast to grid based approaches.

The basic idea of the approach is to cluster segments,
based on an inter segment-distance measure. The quality
of clusters defines the confidence in the participating seg-
ments, which in turn defines the confidence in the entire
map. The main steps are i) the definition of a perceptually
consistent segment-distance measure, ii) the adaption of a
classic clustering technique (hierarchical clustering) to gain
a parameter free clustering system, and iii) a new measure
for intra cluster consistency, which directly leads to the final
goal, the confidence measure.

2. RELATED WORK
To the authors’s best knowledge, there are no publica-

tions available about generic map evaluation, the reason be-
ing that map evaluation is highly task specific. Task specific
map evaluation is usually performed in the broader environ-
ment of robot competitions, such as RoboCup [1] or the US
Department of Energy Grand Challenge [13]. Test arenas,



developed by the National Institute of Science and Tech-
nology (NIST) exist [4], as an effort to create robot maps
in standard environments. These arenas were used in vari-
ous events, e.g. the RoboCup Rescue competition and the
Response Robot Evaluation Exercise [11].

An occupancy grid based evaluation tool, the Jacobs Map
Evaluation Toolkit [3], was utilized in the RobocupRescue
competition 2008. Aside from functionalities like ground
truth map creation, it consists in its core of a metric com-
paring the (grid/pixel based) maps. In short, correspon-
dences between foreground points of the evaluated map and
a ground truth map are established. The correspondence
quality is computed using the spatial distance of the corre-
sponding points.

In contrast, the presented evaluation method does not per-
form a comparison to a ground truth map, but aims to an-
alyze the consistency of a single map. Working on a higher
data structure, line segments, it tries to capture regional
structural properties. These are evaluated based on their
ambiguity of representation: a single cluster represents a sin-
gle feature, a high intra cluster distance can be interpreted
as ambiguity, or low confidence.

A more general introduction and overview of benchmark-
ing and evaluation in robotics is given in [10].

3. INTER SEGMENT DISTANCE
This section introduces a distance measure between pairs

of line segments s1, s2. The basic idea of the distance mea-
sure is to merge two line segments to an ’average’ segment
s̄. The distance is the merging cost, which consists of three
parts:

• the angular distance between si and s̄, i = 1, 2

• the spatial distance between si and s̄, i = 1, 2

• the spatial distance between s1 and s2.

The first two parts penalize the amount of ’non collinear-
ity’ of the segments, the third part penalizes spatial distance.
Although used as a distance measure between two segments,
the design is based on comparison to a ’virtual’ average seg-
ment. This is motivated by certain experiments, suggesting
that human perception assigns or connects line segments to
larger structures under certain circumstances. For exam-
ple, two collinear, overlapping line segments are perceived
as one line, i.e. both segments represent the same element
and should therefore have a distance of zero (which is the
case for our distance measure). Please note that such a dis-
tance measure is no metric. It already disobeys the most
’intuitive’ axiom of the metric axioms, the identity of indis-
cernibles (d(a, b) = 0 ↔ a = b), since two non identical
collinear segments s1, s2 with s1 ∪ s2 6= ∅ have a distance
d(s1, s2) = 0. This fact becomes important for the choice of
the clustering algorithm, see section 4

The definition of the measure is out of scope of this paper
and will be part of a future publication. Figure 1 gives
examples of segment configurations and resulting distances.

4. CLUSTERING
For the clustering, agglomerative hierarchical clustering

in ’single’ mode is utilized. This method seeks to build a
bottom up hierarchy of clusters, starting with each segment
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Figure 1: Segment configurations with increasing
distance. a) 0.09 b) 0.49 c) 0.52 d) 1.14. The thin
line is the merged segment. The increase in a)-c)
results from larger intra segment distance, while d)
results from angular distance.

being a single cluster, ending in a single cluster containing
all segments. Pairs of clusters are merged as one moves up
the hierarchy. The merge is determined in a greedy manner:
the two clusters with minimal distance are merged to a single
one. Hierarchical clustering allows for different strategies to
determine the distance of the newly emerged cluster to the
remaining elements. In our case, we use the ’single mode’
strategy: the distance between two clusters is the minimum
distance between their elements. There is a geometric moti-
vation for the use of this mode: in the example of collinear,
slightly overlapping segments single mode clusters these seg-
ments to a single group — intuitively, single mode clustering
acts like a connected components algorithm, the necessary
topology being defined through the distance measure (small
distance = neighbors).

Hierarchical clustering has two main properties which sug-
gest its use in the segment merging context: first, it is, in
its first stage, parameter free, i.e. no pre-defined number of
clusters has to be determined. Parameters might be intro-
duced later in a follow up stage, which selects the level of
clustering (agglomerative hierarchical clustering always ends
in a single cluster). Second: it is simply based on mutual
distances between the data points (here: line segments), yet
without the need to embed them in a metric space. This
means, hierarchical clustering can deal with any distance
measure (especially non-metrics, as in the given case).

We want to illustrate the segment clustering by a simple
example, see Figure 2. The data set of this example con-
sists of 15 segments, which can intuitively be combined to 3
clusters. Figure 2,b), shows the resulting dendrogram. Each
horizontal bar shows the linkage Li between two clusters, Li

is assigned the minimal distance between elements of the left
and right subtree of the linkage; in the dendrogram this cost
is displayed by the height of the bar. In this simple case, the
dendrogram clearly suggests the three clusters. The critical
step in hierarchical clustering is to define the step to end
the clustering process. We do so if a potential merge de-
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Figure 2: Clustering example. Left: Segments.
Right: Dendrogram. See text for details.

creases the intra cluster consistency significantly. To deter-
mine clusters, we assign a consistency value c(Li) to each
linkage Li. c(Li) compares the linkage distance Li with all
linkage distances Ll

i, Lr

i of the left and right subtree:

Li =
Li − mean(Ll

i ∪ Lr

i )

mean(L)
(1)

with L being the set of all linkages. Data elements s1, s2

(segments) belong to one cluster if all linkages connecting s1

and s2 do not exceed a certain threshold Tc. Normalizing by
mean(L) makes the approach scale independent. Our con-
sistency measure has a clear geometric motivation, and per-
formed well in different examples (see results in section 7).
Determining clusters from dendrograms can be performed
in different ways. More details about hierarchical clustering
can be found e.g. in [5].

5. CLUSTER QUALITY: THE CONFIDENCE
MEASURE

The main step in our evaluation is to determine the con-
sistency of each cluster. Please observe that we already
computed an intra cluster consistency value c(Li) to deter-
mine the clusters. c(Li) has certain drawbacks handling
outliers, it is not necessarily consistent with the perceptual
consistency. We therefore introduce a new intra-cluster-
consistency measure C which is stronger perceptually mo-
tivated and adjusts better to the specific problem. C is used
to re-evaluate each cluster, it is, however, too expensive to
be utilized in the clustering process itself. It is therefore
only applied after the clustering process is finalized.

In C, collinear structures are favored, while clusters con-
taining wide-spread segment sets are penalized. Similar to
the segment distance measure, each segment in the cluster
is compared to an average cluster segment, the cluster rep-
resentative. In analogy to classic intra cluster consistency
measures, the angular and spatial distance to this represen-
tative is taken into account to determine the cluster con-
sistency. Intuitively, all angular distances of segments in
one cluster to the average cluster representative are com-
puted, as well as the transitional distances. For angular
and translational distances, two separate confidence mea-
sures Ca, Ct ∈ [0..1] (angular/translational respectively) are
computed (see details below). The final confidence C is com-
puted as

C = min(Ca, Ct). (2)

A high confidence ( 1) is therefore only assigned if both,
angular and translational confidence are high. Additionally,

clusters must contain a certain minimal number of segments
(in the current system: three segments), otherwise they are
assigned a confidence of C = 0. Figure 3 shows examples
for clusters and their consistency value C. Please note that
especially Figure 3 shows the superiority of a segment based
evaluation to point based occupancy grids. Figure 4 is a
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Figure 3: Evaluating clusters using the confidence
measure C. The red/green-ness is determined by
confidence (the greener, the more confident). a) re-
gions with non matching angles, widespread struc-
tures and areas of insufficient density are marked as
non confident. b) segment based confidence detects
structural inconsistency: the 45 degree corner scans
are detected as inconsistent. d) a magnified view
of the marked part of c): the correctly detected in-
consistent segments have a huge overlap with con-
sistent segments: detection of such areas is not pos-
sible with occupancy grids, but only with methods
detecting underlying structural information.

comparative example showing the performance of the two
confidence measures c(Li) and C(Ci): the tendency of both
measures is approximately equal (this is why we can use the
computationally cheaper c(Li) during the clustering), yet C
yields more perceptually consistent results.

5.1 Angular ConfidenceCa
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Figure 4: Left: A simple example of a map with
high confidence in all 5 regions (clusters). Right:
(blue) cluster quality using the distance matrix
based method c(Li), evaluating cluster 4 (arrow in
left figure) to be of lower quality; (red)C, which is
in accord with the perceived high consistency of all
clusters.

For all segments si of a single cluster L, we compute their
angles ai ∈ [−π/2..π/2] with the x-axis. We define the clus-
ter’s average angular direction θ using the weighted circular
mean wcm

θ = wcm(2ai, |si|)/2 (3)

where |si| denotes the length of segment si, used as the
corresponding angle’s weight (multiplication/division by 2
ensures correct handling of segment directions). The angular
distance da is computed as the weighted (by length) sum of
distances to θ:

da =

∑
i
min((|ai − θ|) mod π, π − ((|ai − θ|) mod π)) li

∑
i
li

.

(4)
Finally, the angular confidence is computed as

Ca = exp
d2

a

2σ2
a

(5)

with a parameter σa = 0.05 which was experimentally de-
termined and fixed.

5.2 Translational ConfidenceCt

For the translational confidence, we compute the maximal
distance ti of each segment to a cluster-representative line S.
S is defined by θ and a point P =

∑
(pi)/#L, the average

center point (pi: center point of si, #L: number of segments
in cluster L). The translational distance is defined by

dt =

∑
ti

#L
(6)

Finally, the angular confidence is computed as

Cd = exp
d2

t

2σ2

t

(7)

with a parameter σa = 0.1 which was experimentally deter-
mined and fixed. Observe that σt is scale dependant. The
current value is determined for robot maps with scale unit
of one meter.

6. MAP EVALUATION
It is a small step from regional evaluation of single clus-

ters to global map evaluation. Given all clusters Ci along

with their confidence measure C(Ci), we define the global
confidence M of a map by

M =

∑
i
#Ci C(Ci)
∑

i
#Ci

(8)

with #Ci denoting the cardinality of Ci. M computes the
average consistency of all segments, defining the confidence
of a segment by the consistency of the cluster it participates
in.

7. RESULTS

7.1 Random Distortion
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Figure 5: Global map evaluation using M. A map
with high confidence was randomly increasingly dis-
torted in 10 steps (Figure shows step 1(a),5(b) and
10(c)). (d) shows the global confidence diagram for
the resulting maps, x-axis: step 1-10, y-axis: confi-
dence M.

In this experiment, a map with high confidence was ran-
domly increasingly distorted in 10 steps. Figure 5 shows
steps 1, 5 and 10 and the confidence measures M for each
of the 10 distortion levels. Expectedly, the results show de-
creasing confidence.

7.2 Map Comparison
In this experiment, we compare results of two mapping

algorithms. The first algorithm [6] is a point based align-
ment (not segment based) algorithm. However, it results in
corrected poses of single scans. We used an algorithm ex-
plained in [8] to extract segments from these single scans,
and superimposed them, using the corrected poses (Figure
6,a). The second map (Figure 6,b) was computed by a new,
segment based algorithm, which will be topic in a future
publication. Both output maps consist of the same single
scans’ segments, yet aligned using different poses. It can
clearly be seen that the first map is less consistent. Our
evaluation algorithm does not only capture the overall dif-
ference in quality (quality of first map: M = 0.2769, quality
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Figure 6: Evaluation of two maps of the data set
’Freiburg082’. a) Quality of map M = 0.2769. b)
M = 0.4355. Colors: level of green (vs red) shows
confidence: The greener, the more confident, the
more red, the worse. The higher regional confidence
in (b) leads to the better total confidence value.

of second map: M = 0.4355), but also identifies the confi-
dence of single clusters (regions). It is interesting to show
segments above a certain confidence level only (Figure 7). In
this data set, this leads to structural de-noising of the map:
usually, large and static (in contrast to smaller and/or mov-
ing) objects in the environment yield high confidence repre-
sentation. Therefore, the main structure of the environment
is highlighted (of course, using higher quality clusters only,
the map quality based on our evaluation measure increases).
Additional merging of the clusters to single segments yields
a clear map in a very compact representation (here: 80 seg-
ments). We performed a second comparative experiment
on a different data set (data set NIST), using the mapping
algorithms FFS [9] and FFS with Virtual Scans [7]. The
latter one is an extension of the first, and leads to (visu-
ally inspected) improved results. Numerical evaluation of
the results using the presented measure is consistent with
the visual impression, see Figure 8. The maps only differ
slightly in certain regions. However, the overall visual im-
pression of (b) is slightly better than the one of (a), which
is also expressed in the evaluation. The experiments leading
to the respective maps are documented in [7].

a

b

Figure 7: Using segments of high confidence only
yields structural de-noising. a) segments of Fig-
ure 6,(b), belonging to clusters Li with a confi-
dence c(Li) > 0.3 (80 clusters, overall confidence
M = 0.6554). b) clusters of (a) represented by single
representative merged segments (80 segments).

8. RUNTIME
The presented algorithm has an order of magnitude of

O(n2), n = total number of segments, which results from
computation of the pairwise segment distance matrix. The
MATLAB implementation of the algorithm needed 1 sec-
ond for the experiment using data set NIST (332 segments),
and 5 seconds for the experiment using data set Freiburg082
(1975 segments), both on a 1.8GHz laptop PC.

9. CONCLUSION AND OUTLOOK
The presented confidence measure evaluates maps in con-

sistency with visual perception. In its core, it uses a clas-
sical clustering algorithm, hierarchical clustering, which is
adapted to the current problem utilizing a segment distance
measure and a segment based cluster confidence measure.
Since segment based representation captures structural fea-
tures better than its lower representation counterpart, point
based maps, erroneously mapped/aligned features can be
detected even if they overlap with correct features. This
leads to detection of structural consistency, which is the
main property evaluated by the presented approach. With a
re-definition of segment distance and cluster confidence, the
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Figure 8: Mapping of data set NIST using algo-
rithms FFS (a) and FFS with Virtual Scans (b).
The evaluation leads to values of M = 0.3386 (a) and
M = 0.3876 (b), reflecting the slight visual improve-
ment of (b) over (a).

approach is extendable to 3D, which makes it interesting for
3D mapping algorithms based on planar elements, e.g. [12].
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