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Abstract Constructing correspondences between points char-
acterizing one shape with those characterizing another is
crucial to understanding what the two shapes have in com-
mon. These correspondences are the basis for most align-
ment processes and shape similarity measures. In this paper
we use particle filters to establish perceptually correct cor-
respondences between point sets characterizing shapes. Lo-
cal shape feature descriptors are used to establish the prob-
ability that a point on one shape corresponds to a point on
the other shape. Global correspondence structures are cal-
culated using additional constraints on domain knowledge.
Domain knowledge is characterized by prior distributions
which serve to characterize hypotheses about the global rela-
tionships between shapes. These hypotheses are formulated
online. This means global constraints are learnt during the
particle filtering process, which makes the approach espe-
cially interesting for applications where global constraints
are hard to define a priori. As an example for such a case,
experiments demonstrate the performance of our approach
on partial shape matching.

1 Introduction

Finding correspondences between visually similar features
of pairs of shapes is a classical problem in Computer Vision.
For example, Belongie et al (2002) defines a threefold pro-
cess for distinguishing shape similarity; his steps include (i)
constructing correspondences, (ii) aligning shapes with one
another, and (iii) employing measures of similarity for com-
paring shapes with one another. Clearly, robustly establish-
ing correspondences is a crucial step in such a process. Our
research aims at a general description of how to construct
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correspondences between sets of data points based on their
shape properties. This includes the construction of corre-
spondences between shapes and parts thereof. In the sequel,
we equate shapes with sets of points sampled (appropriately)
from them; each such point has one or more (local) features
assigned to it. Examples of such local features include cur-
vature (if the shape is defined by a surface, Mokhtarian et al
(2002)), point density, shape context Belongie et al (2002),
and features based on the Poisson equation given in Gorelick
et al (2006). Selecting which local features to use depends
on the particular setting and goals involved. The challenge
is to determine correspondences between shapes using local
descriptors in a globally consistent manner. This challenge
includes resolving the competing claims between local and
global descriptors. We do this by embedding global con-
straints in an iterative algorithm, learned by the system in
a feedback process.

We approach the correspondence problem using Particle
Filters (PF). Particle filters employ probabilities and multi-
ple hypotheses to build correspondences between shapes.

In our setting, we assign a probability to each possible
configuration of single point correspondences. It is based
on the fitness of participating single point-point correspon-
dences. We model the visual correctness of correspondences;
visually better correspondences are assigned higher prob-
ability values. Under certain assumptions, this assignment
leads to the calculation of probabilities for sequences of cor-
respondences, called particles below. Probabilities attached
to particles are, in conformity with statistical terminology,
called ’likelihoods’, below. The global consistency of parti-
cles is enforced using prior distributions. The search space
consists of the set of all possible particles.

The goal of particle filters (PF) is to estimate the poste-
rior distribution over the entire search space using discrete
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distributions (constructed dynamically at each of a number
of different iterations) based on a limited number of parti-
cles. In this sense, particles represent hypotheses about what
the true relationship between shapes really is. The best cor-
respondence is the most likely particle (Maximum Likeli-
hood Particle, MLP) surviving at the end of the PF process
Liu (2002).

All particles compete in an iterative process, each iter-
ation consisting of two steps: prediction and evaluation. In
the prediction step, particles are augmented by adding single
correspondences; the resulting set of particles is called the
’preliminary sample’. Correspondences are selected based
on a correspondence-weight distribution, which represents
single correspondence probabilities as defined by the local
feature descriptors. Using Bayes rule, each particle is as-
signed a weight representing its strength, proportional toits
posterior probability. The evaluation step selects particles
from the preliminary sample using these weights. We eval-
uate particles using residual sub-sampling, see e.g. Liu etal
(2000). This selection causes stronger hypotheses (particles)
to dominate weaker ones, yet randomly permits some weak
hypotheses (outliers) to survive and possibly prosper in later
iterations. In this way we protect against choosing particles
which are only local maxima (Liu et al (2000)).

We augment the PF algorithm by incorporating are-
cedestep which destroys correspondences in particles. The
introduction of a recede step insures that the entire space
of (possible) particles can be visited from any given parti-
cle configuration. In the setting of sequential Markov Chain
Monte Carlo, recede steps could be referred to as ’evolution’
steps. Evolution steps typically serve as transformationson
already constructed particles.

Apart from the recede step, in this paper we do not focus
on the question of how best to improve the PF itself. There
are many different ways of designing particle filters; each
such design is associated with techniques which optimize
their performance, see Moral et al (2006).

Themain contribution of our research is to introduce
the use of PF to solve the correspondence problem, and,
more specifically, the problem of correctly designing the
prediction step. Prediction is based on an iteratively updated
feature probability distribution. This distribution is composed
of two parts: (i) the local part, representing the correspon-
dence probability based on the local feature descriptors, and
(ii) the global part, representing non local constraints. The
global constraints can describe topological or geometrical
features of the shape and are used to achieve global consis-
tency. They are built into each iteration of the PF process,
enforced using the (conditional) information available from
the already constructed correspondence sequence. This has
the advantage of allowing us the easy task oflearningspe-
cific parameters of global constraints at each iteration, rather
than the hard task of predicting them a priori. In general, itis

easier to characterize, yet not to specify global constraints in
detail. For example, for the partial shape similarity in Sec-
tion 7.4.1, it is natural to expect the result to be in a certain
window of the target shape.Learningin our system means,
that we only characterize the task formulating ’there is a
window’, yet leave the computation of specific parameters
(in the example: the window’s location) to the feedback sys-
tem feeding the ’GC update rule’ (Figure 1). We use prior
distributions, built conditionally at each iteration, to enforce
the learning constraints.

This leads to a system in which the likelihood of cor-
respondences is defined via: (i) a matrix representing local
constraints, and (ii) an update rule which iteratively gener-
ates a second matrix specifying parameters of global con-
straints. The update rule implements the feedback cycle, which
enables the system to learn global constraints. Figure 1 illus-
trates this idea.

Fig. 1 Global and local constraints influence the PF process. The cur-
rent particle and the local constraints are fed back to update the global
constraints (’GC update rule’): global constraints are learned during
the PF process.

The sections are organized as follows. After relating our
work to existing approaches, we will introduce our PF ap-
proach along the example of finding partial correspondences
in 2D boundary curves. We first describe the specification
for local constraints (Section 3.3). Section 4 introduces the
optimization problem to find consistent feature correspon-
dences. The Particle Filter approach to solve this problem
is topic of Section 5. Section 6 covers an example of the
PF process. Section 7 explains how to build matrices to de-
scribe global constraints for different correspondence tasks.
Specifically, Section 7.4 describes how to use the Particle
Filter framework to find partial correspondences. Experi-
ments and results can be found in Section 8.

2 Related Work

The process of finding correct correspondences can be seen
as a labeling process. The features of one shape correspond
to the labels; the features of the other have to be labeled.
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In Rosenfeld et al (1976), Rosenfeld introduced the tech-
nique of relaxation labeling (RL) to approach this class of
problems. It has since been a topic of successful ongoing
research (Haralick and Shapiro (1979), Kittler and Illing-
worth (1986), Yefeng Zheng and David Doermann (2006)).
In the soft version, a weight matrix defines the correspon-
dence probabilities between data point and label. The prop-
erty of consistency is defined in terms of certain given neigh-
borhoods. RL is used to solve an optimization problem sub-
ject to the given consistency requirements.

RL is a gradient descent method which guarantees con-
vergence towards some local optimum. It is an iterative, de-
terministic approach, highly dependent on the initial corre-
spondence probability matrix. In this same connection, our
approach can be interpreted as piecewise sequential, non-
deterministic, multiple hypotheses relaxation labeling.Se-
quential, because of the aforementionedprediction step, which
assigns asinglelabelunchangeablyto a data point. ’Piece-
wise’, because sequences of correspondence labeling are bro-
ken by single re-labeling ’recede’ steps’. By contrast, in each
iteration, relaxation labelingre-labelsall the datasimulta-
neously. PF enhances strong local feature properties, while
RL subsumes them, enhancing the global labeling structure.
For these reasons particle filters have the drawback of be-
ing easily lured into local optima. This drawback is coun-
terbalanced by the assumption, at each iteration, of multiple
hypotheses which compete with one another.

Our research is designed as a general framework, yet the
examples and results explore the particular case in which
correspondences are built between2-dimensional boundaries.
Sebastian et al (2003) showed the importance of ordering
constraints in matching curves. We use this constraint as an
example. It shows how to integrate the constraint of conti-
guity conservation for the simpler case of non-partial shape
matching. This special case can also be solved using Dy-
namic Programming (DP); successfully applied e.g. in Mil-
ios and Petrakis (2000), Scott and Nowak (2006), Schmidt
et al (2007). Particle filters PF guarantee only a nearly op-
timal solution, as compared with DP methodology which
guarantees an optimal solution in this case. Nonetheless,
particle filters generalize in cases where DP methodology
does not. For example, particle filters generalize easily to
the task of building shape and part correspondences. Our fi-
nal result shows how we learn constraints in the example of
partial shape matching, used to build similarity measures for
purposes of querying shape databases with shape parts.

Since local descriptors are imprecise, the optimum, cal-
culated using these descriptors, is not necessarily a more ac-
curate solution; an example is given in Section 8.1. We note
that the prediction step for particle filters, described above,
samples a new correspondence from the possible correspon-
dences; this selection does not depend on any implicit or ex-
plicit ordering of features. In contrast to the DP approach in

Scott and Nowak (2006), we do not need a designated start
correspondence and handle shape-reflection (clockwise/anti
clockwise order of boundary points) automatically. We also
don’t need additional parameters characterizing the mini-
mum number of correspondences.

RL is a common way of computation for Markov ran-
dom fields (Qian and Titterington (1992)). Typically, this in-
volves specifying a prior over the search space of particles
at any given iteration conditional on all others. This differs
from the priors advocated here which are defined conditional
on previous iterations. We leave comparisons between this
approach and ours to future work. Another single hypothe-
sis probabilistic approach to find correspondences is given
in Alt et al (2006). It evaluates shape matchings based on
properties of the correspondence set itself, therefore focus-
ing on the global shape properties.

An interesting example of specific 2D-boundary match-
ing is given in Chen et al (2008), applying a local-sequence
alignment algorithm originating from bio-informatics to com-
puter vision. Chen et al (2008) successfully strives for en-
hanced performance on the particular problem of bound-
ary matching, demanding for the ordered point sequence as
a necessary condition. Specializing on this problem, such
an algorithm can achieve faster performance (in Chen et al
(2008):O(mn)), yet is not easily extendable. In contrast,
our PF system framework is based on feature matching with
a high versatility: the presented experiments on boundary
part matching (Section 8) should be interpreted as exam-
ples. The input to the core PF system is a feature corre-
spondence probability matrix, describing local feature cor-
respondences, as well as a function to evaluate the global
consistency of hypotheses (GC update rule in Figure 1). The
design of the input depends on the application, the core PF
system (right side in Figure 1 works independently.

A PF based point cloud alignment system is presented
in Sandhu et al (2008). Based on an Iterative-Closest-Point
(ICP) update step for each particle, it finds the optimal trans-
formation of rigid bodies to minimize a least-square fitting
target function. In a nutshell this system can be described
as multiple hypotheses ICP. Finding the optimal embedding
of a query part in the target shape’s 3D coordinate system,
it leads to impressing results yet is limited to rigid body
transformation, since the underlying feature used for point
correspondences is the points’ location. In contrast, our PF
system finds feature correspondences based on a feature-
distance function, which is more versatile than the direct lo-
cation comparison. See Section 8.3 for an example where a
spatial alignment system like Sandhu et al (2008) would be
likely to fail.

Particle filters have been successfully utilized in both
Computer Vision (mostly for object tracking, Rathi et al
(2007) and image segmentation, de Bruijne and Nielsen (2004))
and robot mapping, Thrun (2002). An interesting example,
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in a broader sense related to our system due to application
of Particle Filters to solve an optimization problem, is a con-
tour extraction algorithm (JetStream) presented in Perez et al
(2001). In there, the target function is a functional over the
search space of plane curves, taking into account certain op-
timality features to achieve smooth, edge fitting curves. The
impressing results demonstrate the applicability of the prob-
abilistic PF approach to Computer Vision problems.

PF, if used to solve optimization problems as in our case,
are similar to general Evolutionary Algorithms (EA) Hol-
land (1975), Goldberg (1989), Back et al (1997), in the sense
that determining peaks of a distribution can be interpretedas
an evolution strategy, or ’survival of the fittest’. The estima-
tion of a distribution, which PF aim at, is utilized to make a
delayed decision about the selection of an optimum. There
are many analogies between PF and EA. Relating our spe-
cific PF case to EA, each individual represents a hypothe-
sis of a configuration of correspondences between points of
the query and target shape. The weight function provides a
fitness, or aptness for each individual, which reflects the lo-
cal feature correspondence fitness, the global configuration
consistency and the completeness of the configuration. The
individuals develop in an augmenting manner to find a sin-
gle optimal individual: starting with no correspondences,the
individuals add single, promising correspondences. This en-
ables the approach to focus on likewise promising, relatively
small subsets of the huge search space. To compensate ef-
fects of development aberration, we allow the algorithm to
step back in the development of individuals: a ’recede’ step
allows individuals to delete inconsistent correspondences of
their configuration, which might have been chosen prema-
turely in earlier stages of development.

Finding correspondences is closely related to shape match-
ing: having correspondences at hand, shape matching is achieved
by adding alignment and shape-similarity steps Belongie etal
(2002). In shape matching, these three steps do not neces-
sarily have to be separated, and are often combined taking
advantage of special features of specific applications. Exam-
ples of shape matching algorithms can be found in Ling and
Jacobs (2007), using the ’inner distance’ between bound-
ary points as a basis for shape feature description and shape
similarity. Siddiqi et al (1999) derives shape features and
similarities from ’shock graphs’, based on a curve evolution
process, acting on bounding contours. Using evolutionary
properties of boundary curvature turning points on multi-
ple scales, Mokhtarian et al (1996) introduced the ’curva-
ture scale space’ for shape boundary comparison, which is
the introductory work for the previously mentioned paper
Mokhtarian et al (2002). A related approach, yet more tai-
lored towards the discrete nature of shapes represented by
polygonal boundary curves, Latecki et al (2000) derives a
boundary partitioning scheme and matches parts of com-
plete shapes using a dynamic programming approach. A sur-

vey of shape-matching approaches is e.g. given in Veltkamp
and Hagedoorn (2001).

General information about particle filtering is given e.g.
in Doucet et al (2001), Liu (2002).

2.1 Notation

If we deal with closed shape boundaries, all index-math is
understood moduleni, the number of points on the bound-
ary. Throughout the paper,φσ(x) will denote the mean0
Gauss distribution with standard deviationσ of a random
variablex. We useφ 0-normalized, i.e.φσ(0) = 1. |g| de-
notes the cardinality of a setg. For matricesM1, M2, M1⊙
M2 denotes the element-wise multiplication. For all colored
figures the color scale is equal to Figure 7, right.

3 Local Constraint: Features and Correspondence
Matrix

In our setting, a shapeSi = v1, .., vk is represented by a uni-
formly sampled2d boundary polygon withk vertices (see
Figure 2). We note that different shapes can have different
numbers of vertices; to each of these vertices we assign a
number of different feature descriptors.

Fig. 2 Objects crown-01, bat-01 and device1-01 from the MPEG-7
data set. The starting pointv1 is marked, the objects are uniformly
sampled counter clockwise using 50 points.

The combination of local feature descriptors will be used
to generate a matrix of local correspondence likelihoods be-
tween pairs of points(vi, uj) ∈ S1 × S2. The current im-
plementation applies two feature descriptors:curvatureand
local distance-signature(these are examples for descriptors,
it is not focus of this research to find or explore optimal lo-
cal descriptors). Their descriptive power is limited, yet they
reveal a certain amount of local shape information. The lim-
itation of these descriptors is reflected in the ambiguity im-
plicit in the correspondence between vertices: a single ver-
tex of shapeS1 can have a large number of possible partners
(vertices with similar features) in the second shapeS2 and
vice versa. In this setting, insufficient regional or globalde-
scriptive information provided by local feature descriptors is
not necessarily a drawback. A certain amount of ambiguity
allows for a wider variety of possible local hypotheses for
each particle.
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Sections 3.1 and 3.2 describe the local shape features
used in this setting to find a (partial) correspondence be-
tween shape boundaries. Section 3.3 introduces and describes
the local correspondence matrix. The local correspondence
matrix is constructed from shape features.

3.1 First Local Feature: Local Distance Signature

Let the shapeS consist ofk vertices,S = {vi, .., vk}. The
local distance signatureLDS(vi) of vertexvi is a scalar
value that contains the normalized weighted average Eu-
clidean distance betweenvi and all other verticesvj ∈ S− =

S \ {vi}. The weightwij of the vertexvj ∈ S− depends on
the boundary distancedb(vi, vj) (the shortest distance be-
tweenvi andvj on the boundary polygon); (j = 1, .., k; j 6=
i. The aforementioned weights define a neighborhood of in-
fluence forvi; they are defined by:

wij = φσw
(db(vi, vj)). (1)

We will describe below how to determineσw. Below, we use
the notation,de(vi, vj) to describe the Euclidean distance
betweenvi,vj . The weighted (not normalized) average dis-
tancelds(vi) (betweenvi andS−) is defined by

lds(vi) =

∑k

j=1 wijde(vi, vj)
∑k

j=1 wij

. (2)

LDS is the normalized and therefore scale-independent ver-
sion oflds. We require thatLDS(vi) is 1 for a pointvi with
average LDSin its neighborhood. Hence, we defineLDS to
be the weighted average oflds.

LDS(vi) =
lds(vi)

∑k

j=1 wij

∑k

j=1 wij lds(vj)
(3)

See Figure 3 for an example of a shape and itsLDS
values.LDS is designed for the purpose of partial match-
ing; it takes into account only a certain neighborhoodaround
each given vertex. The size of this neighborhood is charac-
terized by the parameter,σw ; this parameter reflects regional
properties of the given vertices. The value ofσw depends on
the performed task: if entire shapes are matched ( i.e., non-
partial matching), large values ofσw should be used. In this
case,LDS reflects global shape properties. Smaller values
of σw reduce the information contained in LDS. The patho-
logical case in whichσw is taken to be very small, leads (via
equation the aforementioned equation) to the assignment of
LDS values which are 1 for all vertices. In contrast, for par-
tial matching (i.e. matching a full shape with a part (of it-
self)), a smaller neighborhood characterized by smaller val-
ues ofσw have to be assumed. In case of partial matching,
we takeσw to be20 percent of the boundary length of the

full shape. Experiments show that such a value includes suf-
ficient information, (see the example in Figure 3). In such
a caseσw = 0.2 already contains significant information,
since it accurately characterizes global properties, yet it is
small enough to react to regional properties.
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Fig. 3 LDS (right) of a shape (left) using different values forσw,
boundary length of shape is1.0. A neighborhood defined byσ = 0.2
already contains significant information, which can be seenby its struc-
tural similarity to the global case,σ → ∞. The shape (left) consists
of 50 points, starting with the bottom-most point, ordered counter-
clockwise.

3.2 Second Local Feature: Curvature

ThecurvatureCV (vi) is the signed turn-angle as measured
from vertexvi, assuming an anticlockwise orientation. Con-
vex vertices have negative curvature values (i.e., they are
the vertices joining an oblique angle).CV (vi) ∈ (−π..π).
To obtain a more stable curvature description, we smooth
the curvature values using a gaussian blur filter (selectionof
curvature algorithm is not critical, different techniqueslead
to similar results).

3.3 Local Constraint: Feature Correspondence Matrix

While LDS andCV reflect properties of a single shape, the
feature correspondence matrix reflects the correspondence
probability of point pairs(vi, uj) ∈ S1×S2, based on fitness
of the local featuresLDS andCV . This matrix defines the
local constraints of the point correspondence problem.

We assume two shapesS1,S2 with k1,k2 vertices respec-
tively and define theset of correspondencesC as set of all
pairs of vertices ofS1 andS2.

C = {(vi, uj)|vi ∈ S1, uj ∈ S2} = S1 × S2

We assume a correspondence probability functionPC over
C. PC is defined by thelocal correspondence matrixL =

[lij ]. L is a k1 × k2 matrix containing the correspondence
probabilities, i.e.PC(vi, uj) = lij .
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Fig. 4 Properties ofLDS andCV . Left column: shapeS1, a single
vertexvi′ highlighted (arrow). Second column:LLDS(i′j), theLDS
based correspondences betweenvi′ ∈ S1 and all verticesuj ∈ S2 (see
Equation 5). Stronger red denotes higher correspondence probability.
Third column:LCV (i′j) Column 4: joint probabilityL. All colorings
are normalized, i.e. use the entire range of black to red, therefore they
do not reflect absolute values. Top row: whileLDS gives a good es-
timation,CV is ambiguous.L shows good fits due toLLDS . Second
row: LDS andCV both lead to distinct correspondences,L shows a
high probability for the correct fit. Bottom row: Both,LDS andCV
are ambiguous, leading to a variety of correspondences inS2. Shapes
used are bat-01 and bat-05 of the MPEG-7 test set, uniformly sampled
with 50 points.

The probabilities are based on the local feature descrip-
torsLDS andCV described in sections 3.1 and 3.2. In gen-
eral, each feature descriptor generates its own probability
matrix, the final local correspondence matrixL is the joint
probability, i.e. the element-wise product of the respective
matrices. In our case, we first obtain two correspondence
matricesLLDS andLCV , based onLDS andCV respec-
tively. L is then defined byL = LLDS ⊙ LCV .

The following will describe how to computeLLDS. LCV

is obtained accordingly.

3.3.1 Correspondence Matrix based onLDS

We first compute the correspondence likelihood based on the
distance betweenLDS features. LetL1 = [l1ij ] be ak1× k2

matrix with entries

l1ij = φσl
(
|LDS(vi)− LDS(uj)|

LDS(vi)
). (4)

(The index ’1’ in ’L1’ points out thatLDS is the first of two
local descriptors, without regard for order).σl is a scale in-
dependent parameter that we determine experimentally (we
useσl = 0.1). The valuesl1ij are normalized byLDS(vi).
l1ij describes the likelihood of the correspondence pairvi ∈
S1 → uj ∈ S2. We defineL1

r as the row-normalized version
of L1 for purposes of constructing the directed correspon-
dence probability ofvi → uj .

For reasons of symmetry, we compute the directed cor-
respondence probability ofuj → vi analogously, i.e.L1

c is

computed by replacingLDS(vi) with LDS(uj) in the de-
nominator of eq.4. This is followed by column normaliza-
tion.

Finally, LLDS is the normalized joint probability

LLDS =
L1

r ⊙ L1
c

∑k1

i=1

∑k1

j=1(l
r
ij l

c
ij)

. (5)

Definition of LLDS by L1
r andL1

c is motivated by the
view thatL1

r reflects the probability of correspondence be-
tween pointsvi anduj in the context ofS2, whileL1

c reflects
the probability of correspondence betweenvi anduj in the
context ofS1. Figure 5 illustrates the necessity of this step:
two similar features in two different shapes can have differ-
ent correspondence likelihoods, depending on the number of
similar features in the other shape.LLDS is defined in this
way for purposes of ensuring cognitive symmetry; we do not
draw a distinction between query and target shape.

Fig. 5 Different correspondence probabilities in different directions
(hypothetical example, values not based on actual local features):
S1 → S2: the correspondence probability between the highlighted
points is1/3, since the point inS1 can find3 equal partners inS2.
In contrast, in directionS2 → S1 there’s only a single partner for the
point inS2, hence the correspondence probability is1.

The feature correspondence matrixLCV , based on the
curvature feature, is derived accordingly. Figure 4 shows
different correspondence cases to illustrate the behaviorof
LDS and CV.

3.3.2 Local Correspondence Matrix L

L is the element-wise product ofLLDS andLCV :

L = LLDS ⊙ LCV (6)

In general,L is computed by the joint probability of an ar-
bitrary numbern of feature descriptors, i.e.

L = L1 ⊙ L2 ⊙ ..⊙ Ln.

L has the following properties:

– L reflects the probability of correspondence betweenvi ∈
S1 anduj ∈ S2.
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– L reflects the correspondence probability based on all
local feature descriptors.

– With S′
1 = S2 andS′

2 = S1, L(S1, S2) = LT (S′
1, S

′
2);

L is order invariant (except transposition) with respect to
S1, S2. This of course doesnotmean thatL is a symmet-
ric matrix. For matrix-symmetry the following holds:L

is symmetric⇔ S1 = S2.
– The correspondence matrixL of two identical shapes

S1 = S2 is not necessarily diagonal dominant. However,
more similar shapes result in stronger diagonals.

– In the case of closed boundaries, the matrix must be in-
terpreted horizontally and vertically periodic, i.e. it isa
torus (for a nice visualization see Schmidt et al (2007)).
Although this is not important to the interpretation ofL
as a correspondence probability distribution, it has an ef-
fect on all operations involving the matrix-topology, e.g.
contiguity conservation, see Section 7.

Figure 6 shows examples of correspondence matrices.
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Fig. 6 Correspondence matricesLLDS , LCV , L (columns 1,2,3) for
objects crown-01 (top row) and bat-01 (middle row) and device1-01
(bottom row). For simplicity, we here compared the object tothem-
selves (see Figure 2 for objects); i.e. top row=crown∼crown, middle
row=bat∼bat, bottom row=device∼device. Top row: The south-east
area of the crown matrices contain more information, since the shape
features (spikes) are more distinct. Since the first 25 vertices contain no
distinct information, the diagonal in the North West part isweak. Mid-
dle row: the 3 distinct spots on the diagonal ofLLDS are the wing-tips
and the tail.L has a relatively strong 2nd diagonal, caused by global
symmetry in the shape with respect to the axes through the wing-tips.
Bottom row: the effects of symmetry and spikes are clearly visible in
the matrices, showing high ambiguity inL. The local ambiguity has to
be solved by the Particle Filter system using global constraints.

4 Correspondences and Groupings

As mentioned in Section 3.3, the matrixL defines a prob-
ability PC over the setC of correspondences:PC(vi, uj) =

lij .
A Groupingg ∈ G is a member of the power setPC of

C. A grouping defines a configuration of correspondences.
G defines the search space for our PF process. Each element
g ∈ G takes the formg = {{vi1 , uj1}, .., {vik

, ujk
}}. Fur-

ther constraints (e.g. contiguity conservation, see Section 7)
on groupings can limit the search space to a subsetG− ⊂ G.

A groupingg is complete, if it is maximal with respect
to the containment ordering in the setG−. In quantitative
terms,∀g′ ∈ G− : g ⊂ g′ → g = g′
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Fig. 7 Left: Incomplete grouping, each blue line shows a single corre-
spondence. Center: A complete, strongly contiguity conserving group-
ing. Right: Connectivity matrix of the grouping (center), superimposed
over correspondence weight matrixL. Each red dot is a single corre-
spondence (red dot means connectivity matrix=1). Note that the group-
ing is complete although not all points are participating.

Figure 7 shows examples of both non-complete and com-
plete groupings. These are computed under the constraint of
strong contiguity conservation (see Section 7). We use the
notation,G− for the set of contiguity conserving groupings.
We interpret groupings using the edges of a graph with ver-
ticesS1∪S2. Figure 7 displays this graph in two ways: (i) it
is superimposed over the correspondence probability matrix
L; and (ii) edges are drawn using the connectivity matrixL.

4.1 Optimal Sets of Correspondences

We define the weight of a grouping as,

WG(g ∈ G) =

|g|
∏

l=1

exp (PC(vil
, ujl

)) =

|g|
∏

l=1

exp (lil,jl
) . (7)

We formulate the correspondence problem as one of choos-
ing the complete grouping,̂g ∈ G− from the set of con-
strained groupings,G− with maximal weight or, more specif-
ically,

ĝ = arg max
g∈G−

(WG(g)). (8)

Lemma 1 The optimal groupinĝg is complete.
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Proof This is a direct consequence of the fact that corre-
spondence weights are defined to be larger than1:
PC(vil

, ujl
) ∈ [0..1]⇒ exp(PC(vil

, ujl
)) > 1.

The lemma shows that groupings with more correspon-
dences dominate those with fewer correspondences. This is
in contrast to the joint probability,

∏

(liljl
), which decreases

as the number of correspondences increases.
The optimal grouping can therefore be understood as a

search for a grouping with as many connections as possible,
subject to optimizing the overall weight. Dynamic Program-
ming (DP) methodology in Scott and Nowak (2006) con-
structs optimal shape matches under the constraint of con-
tiguity conservation; this is a special case of the aformen-
tioned optimization problem. In contrast to the DP approach,
which gives smaller weight to groupings with larger num-
bers of correspondences, we need no additional parameters
to ensure that the optimal grouping has some minimal num-
ber of correspondences. This is a consequence of our use of
complete groupings.

Specific tasks of shape matching, like the matching of
parts, require far stronger constraints. Typically, in this case,
additional domain knowledge is required to achieve success.
Particle filters are well designed to properly formulate and
use this knowledge; we employ them below for this purpose.
It will be seen that this approach provides more flexibility in
solving the optimization problem when these additional con-
straints are present. PF enable us to learn constraints during
the iteration process. This enhances our ability to find better
particles.

Intuitively, the advantage of the PF approach follows
from the fact that PF is able to track preliminary optimal
solutions of achangingweight distribution which, in turn,
define a changing target function during the optimization
process. Using this property we are able to interpret the op-
timization task eq.8 in a better way. We do not optimize
the target functionW(g), which is based on a static, non-
changing weight matrixL and a restricted search spaceG−.
Instead, we dynamically adjust the weight function based
on the current state of the particle and an inferred global
constraint. The search space is restricted to correspondences
with probability greater than 0. Expressing the global con-
straints as an iterative adjustment to the local constraints al-
lows us to infer the global constraints themselves in an itera-
tive manner. We therefore do not have to precisely define the
global constraints a priori. Short: the presented framework
allows for adjustability of the cost function as you move
along in the optimization, while standard optimization tech-
niques have a fixed energy function. Section 7 will give an
example of different global constraints and their usage in the
PF system, compared to classic approaches.

This is helpful in cases where such definitions are dif-
ficult to use. Partial matching provides an example of this.

Section 7.4 explains our solution to this problem. We use
hypothetical, iteratively inferred global constraints.

5 Near Optimal Labeling using Particle Filters

Below, we refer to a groupingg ∈ G− as a single particle.
We employ the notation,g1:t for a particle at time (or itera-
tion) t. Particles are built by adding single correspondences
at each iteration. Correspondences are selected based on a
correspondence probabilityW t. W t is an updated version
of the correspondence-weight distributionL. The update of
L → W t is defined by additional global constraints, which
will be explained in Section 7. The following sections will
explain the prediction and evaluation step of PF in our set-
ting, as well as the new step ofrecede. In what follows we
use the definition: all correspondences areadmissibleat it-
erationt = 1. At iterationt > 1, a correspondencec ∈ C is
admissible if, for a given particle,g1:t−1 ∈ G− (at iteration
t− 1), the particleg1:t = g1:t−1 ∪ c is in G−. Admissibility
therefore means being in accord with global constraints.

While this definition of admissibility by subset relation
is a hard definition, Section 7 will introduce a softer defini-
tion, using global constraints defined by probabilities. The
case of hard admissibility is modeled using probability val-
ues of0 and1.

5.1 Prediction Step

The prediction step consists of2 parts: a) select a corre-
spondence based on the updated probability distributionW t

over all admissible correspondencesc ∈ C at iterationt. b)
compute the posterior probability of the resulting augmented
particle.

5.1.1 Distribution for Correspondence Selection

W t is the updated version ofL (at iterationt) incorporating
global constraints given by a matrix,GC(g1:t). GC(g1:t)

itself depends on the particleg1:t at each iterationt. In this
sense, we have,

W t = L⊙GC(g1:t). (9)

Note thatGC(g1:t) changes from one particleg to the next
and from one iterationt to the next. This enables us to ad-
just or learn constraints during the PF process. Section 7
will give examples of such constraints. For single correspon-
dences we use either the notationct, if we want to stress
that a correspondence is selected at timet, or cij , to denote
the event that a correspondence between i and j is selected.
We refer to the update of a grouping g using the notation:
g1:t → g1:t+1 = g1:t ∪ ct+1. We employ the notation,wt

ij ,
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or, shortwt
c, for the log-likelihood associated with the selec-

tion of the correspondencecij (or ct) at timet. Correspon-
dences are selected according to the marginal probabilities

P (cij) =
exp(wt

ij)
∑

l exp(wt
il)

5.1.2 Why Particle Filters are Useful for Constructing
Shape Correspondences

As mentioned before, each particleg ∈ G− is a set of cor-
respondences, whereG− is the state space that contains all
admissible particles (=groupings). We use the terminology
G−t for the set of all particlesg1:t = (c1, c2, .., ct) havingt

correspondences. The goal is to find a good set of correspon-
dences that is complete. At each stage, as a consequence of
admissibility (global consistency), the weightswt

c attached
to correspondences are altered, i.e. for correspondencecij ,
in generalwt

ij 6= wt+1
ij . We use the notationπt for the prob-

ability measure, defined onG−t having the property that it
is proportional to the product of the weights associated with
the correspondences.

πt(g1:t) ∝ wt
c1

...wt
ct

such that
∑

πt(g1:t) = 1 ; t = 1..T

(10)

The dynamic model is specified by the probability ofg1:t

divided by the probability ofg1:t−1.

P (ct | g1:t−1) =
πt(g1:t)

πt−1(g1:t−1)
(11)

Assume that the index of the maximum grouping isT .
The goal is to findg1:T which maximizes

P (g1:T ) =
∏T

t=1 P (ct | g1:t−1)

=
∏T

t=1
πt(g1:t)

πt−1(g1:t−1)

= πT (g1:T )

∝
∏T

t=1 wT
ct

.

(12)

This problem is a standard one in the Particle Filter liter-
ature, see e.g. DelMoral et al (2007). Methods for construct-
ing particle filters of this sort are also discussed in Doucet
et al (2001) and Doucet et al (2006).

We use the notationA[g1:t−1] for the set of correspon-
dencesct which make the groupingg1:t possible. Our Parti-
cle Filter, at timet, selects correspondences according to the
probability

P̂ (ct | g1:t−1) =
wt

ct
∑

y∈A[g1:t−1]
wt

y

. (13)

But this probabilityP̂ has the property that it approx-
imates πt(g1:t)

πt−1(g1:t−1) . This is a consequence of the fact that,
approximately, fort = 1..T

πt(g1:t) ≈ πt−1(g1:t−1)
wt

ct
∑

y∈A[g1:t−1]
wt

y

. (14)

So, choosing correspondences according to the probabil-
ities P̂ (ct | g1:t−1), (t = 1..T ) serves to generate groupings
which make the product of weights, given in equation 12,
large (see Crisan and Doucet (2002) for a more complete
discussion on the convergence properties of particle filters
in this setting).

Please observe that equation 14 only holds if the weights
wt

ct
don’t change significantly over the iterationst for the

selected correspondencesct. This poses a constraint on the
weight update, defined by the global constraint: the most
globally consistent correspondences must not be changed
significantly. Examples for global constraints obeying this
constraint are given in sections 7 and 8.8: while Section 7
introduces ’hard’ constraints, where weights belonging to
admissible correspondences are multiplied by1, others by
0 (which surely does not change the weights of admissi-
ble correspondences), Section 8.8 introduces a ’soft’ update,
multiplying the weights with a consistency in0..1 (1 = con-
sistent): the weights of most likely correspondences to be
selected are only minimally changed, while inconsistent cor-
respondences have a significant weight change, but become
increasingly unlikely to be selected.

5.2 Evaluation Step

We use the standard evaluation technique of residual re-sampling
(see, Liu et al (2000)). We do not focus below on optimizing
the evaluation step for our correspondence task.

5.3 Extension of Classical PF: Recede Step

We augment the algorithm by incorporating arecedestep
which ’destroys’ correspondences in particles. The introduc-
tion of a recede step is crucial to insuring the property of ’ir-
reducibility’ for the underlying algorithm. The property of
irreducibility insures that any particle can be reached from
any other with positive probability. Irreducibility is a cru-
cial feature of all Markov Chain Monte Carlo (see Liu et al
(2000)) Particle Filter algorithms; it insures that surviving
particles converge (in distribution) to the maximum value of
equation 7 The introduction of new proposal steps is typi-
cally accompanied by the use of Metropolis Hastings based
move probabilities. Such probabilities are designed to (ran-
domly) determine whether to accept a recede proposal. Their
use in this context was deemed unnecessary for two reasons:
(i) The particle filter construction itself automatically gets
rid of unlikely particles resulting from such a step, (ii) The
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way in which particle weights are calculated makes it dif-
ficult to properly compare particle fitness before and after
recession: the number of correspondences per particle plays
a crucial role in determining particle survival. As a conse-
quence, it is important to insure that the particles have simi-
lar numbers of correspondences.

Recede steps can be implemented in many different ways.
For the aforementioned reasons, we have designed the re-
cede step in such a way that everyr’th iteration, a certain
numberd < r of randomly selected correspondences are
destroyed for each and every one of the particles. This guar-
antees that, in early iterations, all particles have the same
number of correspondences. In later iterations, the number
of correspondences per particle depends on the property of
completeness; we allow this to vary so that particles with
larger numbers of correspondences dominate. In the current
implementation,r is set to10, and5 correspondences are
destroyed. Figure 8 shows an example of a particle under-
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Fig. 8 Result ofrecedestep: Left: before recede. Middle: directly after
recede,8 randomly selected correspondences removed from particle.
Right: 8 iterations later. The particle is re-built in a more consistent
way, containing the same number as the grouping left. The final result
can be seen in Figure 7, center

going a recede step. The improved performance due to the
recede step is demonstrated in Figure 17, Section 8.1.

Since we do want to destroy strong correspondences (to
escape local optima) as well as weak ones (to refine a con-
figuration), the selection of correspondences to be destroyed
is independent of the strength of particular correspondences.

5.4 Role of Local and Gobal Constraint Matrices in the PF
Process

This Section concludes the usage ofL, W t andGC(g1:t)

during the PF process.

– L contains correspondence probabilities based on local
features and defines the local constraints. Together with
GC(g1:t) it is used to generate the distribution for cor-
respondence selectionW t (eq.9)in the PF update. Each
particle uses the same matrixL, henceL can be com-
puted offline prior to the PF process.

– W t is the distribution for correspondence selection, a
joint probability ofL andGC(g1:t), see eq.9.

– GC(g1:t) contains correspondence probabilities based
on global features. SinceGC(g1:t) usually depends on
g1:t, it is in general not known a priori but generated dur-
ing the PF process. The rule to buildGC(g1:t) defines
the feedback learning process between the particle and
the global constraint at timet (’GC update rule’ in Fig-
ure 1. Each particle uses its own global constraint ma-
trix. In special simple cases,GC can be independent of
g1:t and known a priori. The simplest example is the case
of no global constraints, whereGC consists entirely of
1s in every iterationt.

Note that the PF approach, given in this paper, is a general
framework for different correspondence tasks.Tasks only
differ in the definition of the matrixL and the update rule for
GC used to generate the correspondences. Section 7 pro-
vides examples.

6 Extended PF Algorithm and Example

6.1 Algorithm

We will now define the general PF process to estimate the
Maximum Likelihood Particle.gi

1:t ∈ G
− denotes theith

particle in iterationt, G1:t the set of all particles in iteration
t. The algorithm follows the classic steps of prediction and
evaluation and is extended by the additional recede step.
—————————————————–
1)INIT : t=1, gi

1:t = ∅ ∀i = 1..m= number of particles.W t = L. Init

r for the recede-step (see Section 5.3).

2)Prepare the constraint matricesGC(gi
1:t) for i = 1..m and compute

W t
i = L⊙GC(gi

1:t)

3)Select a correspondenceci ∈ GC based on the distributionW t
i .

4)PREDICTION : compute posterior distribution (weight of particle)

P (gi
1:t+1|c

i), (see Section 5.1.2).

5)normalize weights:P (gi
1:t+1)←

P (gi
1:t+1)

∑

m
j=1

P (g
j
1:t+1

)

6)EVALUATION : compute new set of particlesGt+1 ← RRS(Gt)

using residual re-sampling (RRS) preserving most probablythose par-

ticles with dominant weight.

7)RECEDE: if mod (t, r) = 0 deleted < r correspondences in each

particle inG1:t (see Section 5.3).

8) LOOP: if not all particles are complete:t ← t + 1, return to step

2 elsereturn particlêg1:t = argmaxg1:t∈Gt
(P (g1:t)) with maximum

weight to represent a near optimal solution.

—————————————————–
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6.2 Example

We want to illustrate the PF algorithm using a simple exam-
ple. We will use the case of correspondences between two
shapes, represented by closed boundaries under the global
constraint of strong contiguity conservation (for construc-
tion of global constraint matrix see also Section 7.3). The
shapesS1 = (v1, .., v10), S2 = (u1, .., u7) are uniformly
sub-sampled using10 and7 points respectively, see Figure
9, left. The vertices in each shape are numbered from the
bottom-most point counter clockwise. The local correspon-
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Fig. 9 ShapesS1 (black),S2 (red) and local correspondence matrixL.

dence matrixL was built using the curvature feature descrip-
tor only. Figure 9, right, showsL, clearly highlighting the
distinct feature pointsv1, v4, v7 in S1 and their counterparts
u1, u3, u5 in S2: L suggests mainly the (ambiguous) corre-
spondences
(v1, u1), (v1, u5), (v4, u3), (v5, u1), (v7, u5).

To keep the example simple, the PF process is performed
without recede step, using4 particles. Each particle is ini-
tialized to be ’empty’. The global constraint of strong con-
tiguity conservation has no influence up to and including
the choice of the third correspondence, since we also allow
reflection (flipping) of the shape. Hence the first3 corre-
spondences are drawn from the distribution solely defined
by L. Figure 10 shows the PF process, iterations3 to 7.
Each row shows the surviving4 particles after residual sub-
sampling, the columns are sorted by particle weight from
strong to weak. Each sub-Figure shows a particle consist-
ing of the grouping (=correspondences, blue lines), along
with its weight. The arrows between the sub-figures mark
the evolution of each particle in the next iteration. The dou-
ble framed sub-figures mark the line of inheritance of the
winning particleĝ, which is shown at the bottom left in Fig-
ure 10 and in Figure 11, left. Observe that the correspon-
dences in̂g lead to alignment with a reflected version ofS2.

Table 1 shows the correspondences along with their weight
in the order they were established, Figure 12 illustrates the
corresponding connectivity matrix of̂g in iterations3 to 5.
The first three rows of the table are the correspondences of
the double framed sub-Figure in Figure 10, top row. Each
succeeding row in the table defines an additional correspon-
dence of the double-framed sub-figures in the successive

0.265 0.253 0.244 0.239

0.264 0.253 0.247 0.236

0.266 0.250 0.250 0.239

0.264 0.264 0.255 0.255

0.260 0.260 0.240 0.240

Fig. 10 PF process. The rows show the4 particles in iterations3 to
7 after residual sub-sampling. The particles in each row are sorted by
weight (strongest first). Arrows show evolution of particles. The evo-
lution of the winning particle can be followed by looking at the double
framed sub-figures. See text for further details.

Fig. 11 The winning particlêg (left). Procrustes alignment using the
correspondences of̂g (right).

rows in Figure 10, e.g. correspondence(4, 3) is the corre-
spondence added by the update step to the framed sub Figure
in row1 to gain its successor, the framed sub Figure in row2.
Although the particle starts with a weak (yet correct) corre-
spondence, it survives and evolves into the winning particle
establishing stronger correspondences later.

Iterationi Corr. (vki
, uji

) WeightL(vki
, uji

)

1 (5,2) 0.045
2 (9,6) 0.056
3 (1,5) 0.195
4 (4,3) 0.110
5 (8,7) 0.043
6 (7,1) 0.152
7 (2,4) 0.048

Table 1 Correspondences of the winning particleĝ during the PF pro-
cess.
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Fig. 12 Connectivity matrix showing correspondences of the winning
particleĝ during the PF process.

7 Global Constraints to Solve Specific Correspondence
Tasks

This Section shows how to define the global constraint ma-
tricesGC to model different tasks. In generalGC depends
on a single particleg1:t at a certain timet. GC is therefore
in general defined as a function ofg1:t. This function is the
’GC update rule’, modeling the feedback process , as men-
tioned in Figure 1.

The global constraint matrix defines the specific task.
We will give examples and mention existing solutions to
these tasks to illustrate how the PF system unifies these prob-
lems.

7.1 No Global Constraints

The most simple case.C is independent ofg1:t and is de-
fined by cij = 1. Since the problem is globally uncon-
strained, the particlêg consisting of all possible correspon-
dences solves the optimization problem eq.8.

7.2 One to One Correspondences

To guarantee one to one correspondences (in contrast to one
to many), the probability of selecting a correspondence con-
taining a point that is already part of an existing correspon-
dence in particleg1:t must be set to0. A matrixGC(g1:t) =

[cij ] defined by:

cij = 0 ⇐⇒ (vi ∪ uj) ∩





|g1:t|
⋃

i=1

gi
1:t



 6= ∅, else cij = 1

guarantees the one to one constraint. Example (particleg1:t

is represented by its connectivity matrix):

g1:t =

(

0 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 0

)

GC(g1:t) =

(

1 0 1 0 1

0 0 0 0 0

0 0 0 0 0

1 0 1 0 1

)

The problem of one-to-one correspondences without order
preservation is classically solved using the Hungarian al-
gorithm. An example for this problem is ’Shape Context
Matching’, as described in Belongie et al (2002). Since here
no topological constraints are implied, the local feature de-
scriptor must contain regional or neighborhood information.

The ’Shape Context’ descriptor fulfills this requirement. How-
ever, the implicit definition of regions in the shape-context
descriptor makes the simple Hungarian approach unfeasible
for partial matching, as explained in Lakaemper et al (2008).

7.3 Strong Contiguity Preservation

g is said to becontiguity conserving if, for a clockwise or-
dering of(vi1 , .., vik

) in S1, (uj1 , .., ujk
) is ordered either

clockwise or anti-clockwise inS2 (allowing both clockwise
and anti-clockwise orderings inS2 makes it possible to find
correspondences in the reflected version ofS2). g isstrongly
contiguity conserving, if it is contiguity conserving and
contains one to one correspondences only. The implemen-
tation of such a constraint using matrices is straightforward;
we give an example below:

g1:t =

(

1 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

)

⇒ GC(g1:t) =

(

0 0 0 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 1

)

An example illustrating strong contiguity conserving group-
ing is in Figure 7. Note that in this case the topology of the
matrix is important: if we deal with closed boundaries,GC

must be interpreted periodic in rows and columns (torus).
This problem is classically solved using Dynamic Pro-

gramming (DP), as in Scott and Nowak (2006). DP will find
the optimal solution to eq.8, while PF is near optimal only.
The experiment Section 8 will show that the loss of preci-
sion of PF is visually unimportant.

The PF approach unifies the former problems in a sin-
gle framework, yet the specific solutions (Hungarian/DP)
are superior as they lead to the optimal solution. PF shows
its advantages in problems where more sophisticated global
constraints are needed. One example is partial shape match-
ing.

7.4 Adding Domain Knowledge for Partial Shape Matching

In all previous examples the definition ofGC(g1:t) was straight-
forward: the global constraint was a hard defined admissibil-
ity, resulting in an a priori known rule to set the elements of
GC(1 : gt) to either0 or 1. The following example differs
in two aspects: first, the admissibility is defined in a soft
way by probabilities in[0, .., 1]. Second, the update rule is
not known a priori, but is stated as a hypothesis based on
the groupingg1:t and weight matrixL. As the number of
iterations increases, the hypothesis becomes stronger. This
can be interpreted aslearning the constraintduring the PF
process.

The global constraint derived here extends the global
constraint of strong contiguity conservation. The constraint
of strong contiguity conservation is sufficient to find good
groupings for closed shape boundaries. However, it fails in
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finding part correspondences, see example Figure 13, left.
Additional domain knowledge has to be implemented.
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Fig. 13 Part correspondences using different constraints. From left to
right: 1) strong contiguity only. 2) Procrustes alignment (see Section
8 based on (1). 3) windowed strong contiguity as introduced in Sec-
tion 7.4. The window was learned during the PF process. 4) Procrustes
alignment of (3)

In the following we assume that shapeS1 entirelycon-
tains partS2. This is not a strong assumption, since ifS1

only contains parts ofS2, we can exchange both shapes and
use an appropriate subset ofS2 as the part. This assump-
tion is above and beyond the constraints used to compare
entire (not parts of) shapes. However, we do not handle the
case of correspondences whereS1 and S2 have only par-
tial overlap inboth shapes. For purposes of simplification,
we assumeS1, S2 have the same scale and are sub-sampled
equally. Ignoring these constraints is done only at the cost
of a less intuitive constraint matrix, see Section 7.4.1. These
assumptions jointly imply that the corresponding verticesin
S1 have to be ’close together’, and not spread out all overS1.
In other words, we focus exclusively on a certain connected
region (or window) ofS1.

Figure 13 shows the effect of this constraint. If it is not
applied (left), only the center vertices of partS2 are held
together by the contiguity constraint, hence they lead to cor-
rect correspondences. The outer vertices ofS2 have the op-
portunity to correspond to wide regions of shapeS1, since
contiguity is a local neighborhoodconstraint which is weaker
for the (intuitively) weaker neighborhood-bound outer ver-
tices. Focusing on a connected region inS1 leads to the cor-
rect correspondences (right).

If the region of focus is known a priori (i.e. the position
of the part in the shape is roughly given but the exact single
correspondences are not explicitly known), the optimization
process is simply a windowed version of entire shape match-
ing. Unfortunately the window is not known. The strength of
our approach is that it can estimate the window during the
PF process by analysis of the particle given in each iteration.
Below, we use the notation, ’diagonal matrices’ to refer to
matrices with elements on either the main or side-diagonals.
To highlight a certain regionr = (vr, vr+1, .., vr+k) in S1,
correspondences withvi ∈ r have to be masked inL. Due
to the equidistant sub sample and equal scale assumptions,
the mask is a diagonal matrix. The position of the diago-
nal defines the allowed region. We use a soft mask, i.e. a
gaussian blurred diagonal, see Figure 14. The kernel size, or

standard deviationσt of the blurring defines the distinctive-
ness of the region. To learn the window during the PF pro-
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Fig. 14 Windowing for partial shape matching. In reading order: 1)
correspondence matrixW of shape and part shown in Figure 13. 2)
The final window, learned during the PF process. 3) Windowed version
of (1). 4) The final connectivity matrix (superimposed over (3)). (4)
corresponds to the grouping shown in Figure 13, right. All matrices are
shown in transposed form.

cess, we analyze the connectivity matrix of a particleg1:t at
timet for the presence of diagonals. That is to say, we deter-
mine the most likely diagonal of its connectivity matrix, tak-
ing into account both the connectivity matrix ofg1:t as well
as the underlying correspondence weights of the matrixL.
We gauss-filter the estimated diagonal to obtain a window
GCσt

(g1:t). The diagonal is a hypothesis for our focus of
attention, namely, the regionr. The strength of the hypothe-
sis is modeled by the filter kernel sizeσt. A largeσt defines
a weak hypothesis (or indistinct region). Decreasingσt dur-
ing the iterative process, increases the trust in the diagonal
hypotheses at later iterations, since it narrows the diagonal
constraint windowGCσt

(g1:t). The final global constraint
matrixGC(g1:t) is then given by:

GC(g1:t) = GCσt
(g1:t)⊙GC(g1:t). (15)

with GC(g1:t) modeling the strong contiguity preservation
as defined in Section 7.3. To ensure that the final particle
ĝ1:t is entirely placed in the windowGCσt̂

(ĝ1:t), the parti-
cle process is repeated: from the first PF process, we only
use the final constraint matrixGCσt

(ĝ1:t) of the winning
particle. We then run a second entire particle filtering pass
usingGCσt

(ĝ1:t) in each iteration (i.e. we finally run a win-
dowed version of the optimization process). The second pass
needs only a few particles since the window limits the search
space drastically (in our tests we decreased from50 particles
in the window-learning pass to8 particles in the windowed
pass, which suggests that in the second pass we are close to
utilizing a greedy process).

σt is determined experimentally. It depends on the size
n (number of points) of the target shape and sizem of the
query part: starting with a value ofn + σmin, we decrease
σt linearly toσt+1 ← σt − n/m in each iteration to a mini-
mum ofσmin = 3 (motivation: starting with a wide standard
deviation which nearly does not reflect any neighborhood re-
lation,σt decreases down toσmin = 3 in m steps;m is the
number of iterations to find them correspondences not tak-
ing into account ’recede’). Since this simple strategy led to
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satisfying results, no further research (e.g. with non-linear
cooling strategies) was performed at this time.

Note that especially the interplay betweenGCsigmat̂
(g1:t)

and the recede-step already builds a near diagonal solution
in the first run, since the domain knowledge gained in it-
erationt helps to rebuild destroyed connections appropri-
ately inside of the window. With this approach, parts could
be matched successfully. For results see Section 8.

7.4.1 Multi Scale Partial Matching

In the work presented in Lakaemper and Sobel (2008) we as-
sumed the same scale for both shapes. We now explain how
the system can be extended to operate on multiple scales: as
an example, let us assume an entire shapeS1 with boundary
length1.0, uniformly sampled by100 points, and a partS2

of length0.25, uniformly sampled by25 points. If we as-
sume identical scales, i.e. a scaling factorsc = sc2/sc1 of
1.0 (with sci=1,2 = scale ofSi=1,2), the connectivity matrix
of the optimal grouping would be diagonal, i.e. describe a
line of π/4 degrees in the matrix, a ’slope’ (see Figure 15).
Assuming a different scale changes the angle of the slope:
the larger the scale ofS2, the more horizontal the line be-
comes, since now the25 points ofS2 cover a smaller part
of S1; e.g. with a scaling factor of2.0 between the2 shapes
the25 points ofS2 would correspond to a region inS1 cov-
ered by12 points only. Simple geometry defines the angle

α of the slope byα = atan
(

sc2

sc1

)

. To gain scale indepen-

dence, we analyze the current particle not only with respect
to the probability of diagonals, but determine the probabili-
ties of slopes in a certain range of angles. To cover a range
of scale-ratiosc2

sc1
∈ [0.5..2.0], we cover slope-angles in the

rangeα ∈ [0.46..1.11].

α
1

α
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α
3

slope
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Fig. 15 ’Slopes’ as generalization of diagonals for scale independent
matching. left:3 slopes with different angles. Center: blurred slope for
scaling factorsc = 1.0, Right: same as (center) forsc = 2.0

Figure 16 gives an illustrative example of the effect of
multi scale matching. A part (constant size, 21 points), is
matched to versions of a complete shape, sub sampled with
a different number of points. The corresponding parts in the
complete shapes therefore appear scaled relative to the 21-
sample point query part (e.g., the corresponding part in the

complete 100-point shape consists of 42 samples). Accord-
ingly, the correspondence matricesW , top row of Figure 16,
are of size30× 21, 50× 21, 75× 21, 100× 21. Since they
always contain the same matching pattern of complete shape
vs. part (in different resolutions), the pattern becomes ’verti-
cally stretched’ using higher sample rates, which creates the
slopes of different angles. The center row shows the final
window of the winning particle, the bottom row the corre-
spondences.
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Fig. 16 Multi scale partial matching. The part consists of 21 pointsof
a 50-point sub sampled ’fountain’ shape. Columns left to right show
comparison to complete ’fountain’ shape, sub sampled with 30, 50, 75,
100 points respectively, resulting in scaling of 3:5, 1:1, 3:2, 2:1 (num-
ber of points in corresponding part : 21 samples). Top row: correspon-
dence matrixW . The vertical ’stretching’ effect, leading to different
diagonal slopes, can clearly be seen. Center row: Final window. Bot-
tom row: correspondences.

8 Experiments and Results

8.1 Performance of Particle Filtering

We evaluate the performance of the PF process in the opti-
mization process with respect to different numbers of par-
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ticles, with and without recede-step. Given a shapeS de-
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Procrustes Distance (corr. with recede)

Particle Weight, no recede step

Fig. 17 Performance of PF system with different number (1-160) of
particles (x-axis) with and without recede step. Black: with recede.
Blue: no recede step. For black/blue graphs the y-axes showsthe
weight of the best particlêg. Red: Procrustes Distance of aligned
shapes.

fined by a2d polygonal boundary with50 equidistant ver-
tices, we compute the correspondence matrixL of S with
itself (i.e. S1 = S2) under strong contiguity conservation.
This setting provides a ground truth optimum groupingĝ =

{{v1, v1}, .., {v50, v50}}. We perform different runs on the
optimization process using1 to 160 particles, the result of
each run is the weight of the best particle. To see the influ-
ence of the recede step, we repeat the experiment skipping
this step. To see the influence in the alignment resulting from
finding a near optimal solution only, we compute the shape
similarity based on the best particle correspondence using
Procrustes Analysis (PA), Gower and Dijksterhuis (Decem-
ber 2005). PA aligns two shapesS1, S2 based on one to one
correspondences. It finds the best scaling, reflection, rota-
tion and translation ofS2 to minimize the sum of squared
distances between corresponding points. This sum, the PA
distance, is used in our experiment as the shape similarity
measure. PA is extremely sensitive to outliers and can only
be used with a robust correspondence computation. The us-
ability of PA as similarity measure shows the stability of
the PF correspondences. Figure 17 illustrates the result. The
PF system with recede step computes weights near the op-
timum (1.45) robustly already with> 60 particles. Interest-
ing is the fact that the Procrustes distance drops to0 (perfect
alignment) much faster, proving that the additional preci-
sion gained is visually unimportant, hence the precise opti-
mum, as found by DP approaches, would not enhance the
alignment here. The graph also shows the importance of the
recede step: skipping it, the performance of the system is
significantly less than optimal.

8.2 Correspondence of Complete Boundaries

This Section will show the behavior of the PF system on
complete boundaries and will show examples of correspon-
dences under the influence of noise, occlusion and sparse
presence of features. We used shapes of the MPEG-7 data
set, all boundaries are uniformly sub-sampled using 50 points
and treated as closed boundaries. The global constraint is
’strong contiguity preservation’, as explained in Section7.3.
For display reasons, the shapes are also shown after align-
ment, using a simple, basic form of Procrustes Alignment
(PA) (Gower and Dijksterhuis (December 2005)). For dis-
play reasons (the optimal solution shows a connectivity ma-
trix close to the diagonal) the shapes were index-aligned, i.e.
the starting points in both shapes correspond visually to each
other. This does not influence the experiments, since the PF
system chooses the initial correspondences independent of
the point indices.

Example 1Matching of identical shapes (Figure 18).
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Fig. 18 Matching of a shape to itself. In reading order: a) correspon-
dences b) PA alignment, based on (a), c) connectivity matrix(red dots)
of correspondences superimposed over local constraint matrix L.

We matched shape ’carriage-01’ to itself. The PF system
delivered the perfect result, the connectivity matrix is di-
agonal, each point corresponds to its identical counterpart
of the other shape. The reason is twofold: first, the matrix
has a strong diagonal, suggesting these connections as the
most probable ones to the PF system. Second, dominance of
correspondence-rich particles lead here to the solution with
maximal number of correspondences.

Example 2Occlusion of Parts(Figure 19).
In this example we match similar shapes (’camel-01 vs.

’camel-02’), with a missing part in one shape (see Figure
19) (three legs vs. four legs). The PF systems does not find
correspondences to that part, which is correct. The missing
part can be detected by a ’jump’ in the upper-left part of the
connectivity matrix Figure 19,(c), following the higher cor-
respondence probabilities, which are off the main diagonal.

Example 3High Local Ambiguity (Figure 20).
The two shapes (’apple-01’ vs. ’apple-06’) in this exam-

ple lack distinct features, i.e. most of the points are described
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Fig. 19 Matching under occlusion. In reading order: a) shapes and cor-
respondences. The green shape has one more leg. b) PA alignment c)
connectivity matrix and local constraint matrixL

by similar values ofLDS andCV . The local constraint ma-
trix L therefore shows a huge area of similar correspondence
probabilities for the majority of points, see Figure 20(c).
This leads to high ambiguity, which can only be solved using
the global constraints. The preference of correspondence-
rich particles in cooperation with strong contiguity are the
driving force to establish correct correspondences for am-
biguous cases.
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Fig. 20 High local ambiguity. In reading order: shapes (a) with few
distinct features. b) PA alignment c) connectivity matrix and local con-
straint matrixL: the lack of features leads to a huge number of similar
probability values (ambiguity)

Example 4Noise (Figure 21).
Matching of a shape to a noisy version (’device0-01’ vs.

’device0-13’). The challenge here is similar to the former
experiment, yet based in the opposite reason: featurerich-
ness, mostly inferred by distinct values inLDS, leads to
ambiguity: the5 highly probable matches in each row (col-
umn) show the similarity to convex/concave extrema in the
other shape. The PF system reacts robustly to this challenge.
Observe that it is somewhat arbitrary which of the strong di-
agonals is chosen by the PF system, since the shape is highly
symmetric and the matrix is interpreted periodically.
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Fig. 21 Matching under noise. In reading order: a) shapes and cor-
respondences, b) PA alignment, c) connectivity matrix and local con-
straint matrixL: here featurerichnessleads to high ambiguity.

8.3 Complete Matching of Articulated Shapes

This experiment demonstrates the applicability of our ap-
proach on the data set of articulated shapes from Ling and
Jacobs (2007). The boundary was sub sampled using50 points.
As local feature descriptor, we used curvature only;50 par-
ticles were utilized. See Figure 22 for results.

Fig. 22 Matching of Articulated Shapes. The image in the leftmost
column is the reference shape for each row. It appears as the red shape
in the correspondences.
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8.4 Partial Correspondences

In this experiment we provide visual proof of the perfor-
mance of partial matching. The data are shapes from the
standard MPEG-7 similarity data set, see Latecki et al (2007).
The data set provides70 classes of20 similar shapes each.
We use the data set in the form of boundary polygons; each
such polygon contains50 vertices. We randomly select shape
S1 from the data andS2 as a randompart (size:15 vertices)
from a different shape in the same class. The PF process
(50 particles, constraint: windowed strong contiguity as pre-
sented in Section 7.4) leads to correspondences which are
used for Procrustes alignment. Figure 23 shows some typi-
cal examples of partial matchings.
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Fig. 23 Each row shows an example of partial matching, using differ-
ent shapes from the MPEG-7 dataset. The parts are randomly chosen
from different shapes of the same class as the full shape. Column 1:
correspondence. Column 2: Procrustes alignment. Column 3/4: con-
nectivity matrix and final, learned global constraint matrix, showing
the window the correspondences were chosen from.

8.5 Database Retrieval using Parts

We compare our PF correspondence to part matching tech-
niques based on time series algorithms described in Latecki
et al (2007). As in Latecki et al (2007), we took10 parts of
shapes of different classes from the MPEG-7 data set, the
parts being identical to the ones described in Latecki et al
(2007). We then matched each part to the entire database
(all 1400 shapes), based on the PF correspondence (PFPA)
and Procrustes Alignment. To achieve a fair comparison,
we used curvature as shape descriptor, as in Latecki et al
(2007). Figure 24 shows the parts (left column) and the top
5 matches for each part. In nearly all cases (96%) the query
resulted in shapes of the same class as the query part.

PFPA OSB DTWCW LCSS
Top 1 100 100 90 90
Top 5 96 92 72 42
Top 10 91 84 67 34
Top 20 74 67 59 26

Table 2 Retrieval Results of Partial Query, PFPA is the described ap-
proach.

Table 2 shows the intra class hit percentage for the top
1, 5, 10, 20 results, i.e. how many of the top-n results are
from the same class as the query part. PFPA is the described
algorithm, OSB the algorithm described in Latecki et al (2007).
DTWCW is a windowed version of Dynamic Time Warping,
LCSS stands for Longest Common Sub Sequence. The per-
centages of OSB, DTWCW and LCSS are taken from Late-
cki et al (2007), details about these algorithms are described
there, too. Due to our robust partial PF correspondence, even
a simple similarity measure like PA outperforms the compet-
ing approaches.

8.6 Shape Classification Using Random Parts

Goal of this experiment is to classify (label) a query shape
by partial similarity to shapes of a pre-labeled data base, us-
ing multiple random parts of the query shape. In short: to
which class does the query shape belong? The target data
base consists of different classes with multiple representa-
tives. We use the entire MPEG-7 database, consisting of 70
classes, 20 members each.

The basic idea is to randomly select parts from the query
shape, and to compare them to different randomly selected
members of each of the70 MPEG-classes. The underlying
assumption for this experiment is, that randomly selected
parts will in average emphasize common features of the query
shape with a class of similar shapes. In contrast, shapes of
non-matching classes will offer less fitting features. The ad-
vantage of partial matching over entire shape matching is,
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Fig. 24 Results of database query with parts. Left column is the query
part, which is compared against the entire MPEG-7 data set (1400
shapes). Each row shows the respective top5 hits.

that non rigid transformations are less influential as long as
distinct shape features are still represented. Since the parts
are randomly chosen, a higher number of part tests must be
performed to ensure that characteristic shape features are
captured. The best average fitness determines the classifi-
cation.

Similar to the previous experiments, we determine the
similarity using simple procrustes fitting based on the par-
tial correspondences returned from the PF system. A cor-
rect partial correspondence is crucial for the success of such
a system. However, since the parts are randomly selected
they are frequently not significantly descriptive. To adjust
for that, we refine the similarity measure in the following
two ways: first, we do not use the two outmost (the two
ends) part correspondences for procrustes matching. In cer-
tain cases, the PF system allows these correspondences to fit
outside the ’optimal window’. Since procrustes matching is
very sensitive to outliers, discarding the endpoints leadsto
a more robust fit. Second, we take into account the scaling

factor of procrustes fitting. Procrustes analysis automatically
scales the part for an optimal fit. With non descriptive parts,
this can lead to a good geometric fit even with non matching
parts. For example, with a simple straight line (query) and a
target spiral (of same boundary length) the fit can be dras-
tically improved when scaling the query part’s size down to
the spiral’s outer radius; this improved fit is not intuitiveand
misleading. Denoting the value of procrustes least squares
fit by P , and the procrustes scaling factor bys, we measure
the fitness between a query partQ and a target shapeT by
dP (Q, T ) = P max(s, 1/s) (dP (Q, T ) = 0 ⇒ best pos-
sible fit). Hence, we introduce a penalty for the procrustes
scaling. Please note that this factor introduces the assump-
tion that the part and object data is of similar scale. In this
experiment we need this assumption, since we do not rely
on significant parts, but use random parts. Scale indepen-
dent shape of such parts would be too general and would
introduce many false positive matching results.

We sub-sample every shape of the MPEG-7 data base
using50 uniformly spaced boundary points. The query part
size is fixed to15 points. We use the first shape in each class
as query shape, i.e. the experiment classifies70 shapes. Each
of these70 shapes is compared against randomly chosen
shapes of theentire MPEG-7 data base. A simple greedy
algorithm to weed out non-promising candidate classes is
used to shorten the computation time: starting with the5th
iteration, we do not match the query part against members
of classes with an average fitness higher than4 times the
currently best fitting class (see ’if’ statement in the follow-
ing algorithm). For each query shapeS, we iterate through
the following classification process, using a maximum of
partMax = 20 parts:

input = shapeS
count = 1; partMax = 20; numberOfClasses = 70
average class fitnessacf(1 : numberOfClasses) = 0
while count < partMax do

select random query partQ from input shapeS
for c=1:numberOfClassesdo

if (count < 5) | ((count > 5) & (acf(c) < 4min(acf)))
then

randomly select target shapeT from 20 members of class
c
compute correspondenceQ,T
compute procrustes fitnessdP (Q, T )
updateacf(c) usingdP

end if
end for
count← count + 1

end while
class of shapeS is argmin(acf(1 : 70))

Figure 25 shows a typical example. It shows the first 4 itera-
tions of the algorithm using the query shape ’comma’. In the
first iteration, the single part was not distinct enough to place
the ’comma’ class in the top5 results. Iterations2 − 4 all
show good matches to (different) members of the ’comma’-
class, the average class fitness improves relative to the aver-
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age fitness of other classes: although single ’comma’-parts
might fit better to non-’comma’shapes, in average the matches
to the appropriate class prevails to eventually place the ’comma’-
class at rank1 (staying at rank one for the remaining itera-
tions).

parts:

iter. 1

NaN
NaN NaN NaN NaN

iter. 2

0.00156114 0.00304394
0.00246132

0.00212883 0.00389858

iter. 3

0.00198676 0.00288828 0.00274534 0.00204092
0.00237566

iter. 4

0.00223171 0.00190696 0.00238417
0.00247434

0.00240461

Fig. 25 Four iterations of classification of shape ’comma’, Top row:
the shape and four randomly selected parts. Rows labeled ’1-4’: top
five results of classification comparing the respective partto randomly
selected representatives of all70 MPEG classes. Using only the first
part, the comma does not appear in the top5 classes. After4 iterations,
the consistent good match with (different) members of class’comma’
averages out the matches in other classes. Class ’comma’ stays on rank
one for the following iterations (not shown).

Figure 26 shows the result of the experiment. For each
of the 70 query shapes, the rank of its correct classifica-
tion is shown. In general, the classification works well, ex-
cept for certain problem cases which we will discuss below.
The problem cases are the shapes of the ’device’ classes
in the MPEG-set (classes 23-32).Excluding all 10 device
classes, table 3 shows the results:91.67 shapes are correctly
classified, no correct classification ranks worse than rank4

(with only a single class ranked3, and4 classes ranked2).
Note that this experiment is different to the popular MPEG-
7 bull’s eyetest.

Correct classification rank number query shapes percent
1 55 91.67
2 4 6.67
3 1 1.67

total: 60 100

Table 3 Table of correct classification ranking of MPEG-7 setexclud-
ing the ’device’ classes
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Fig. 26 Ranking (y-axis) of correct classification for the70 query
shapes (index of class: x-axis). Except for the ’device’ classes (red,
classes 23-32), the classification based on part-correspondence yields
impressive results. Please compare table 3. See text for discussion
about the ’device’-classes.

8.6.1 Excluding the ’Device’ Classes: Explanation

If we look at the boundary representation, the10 ’device’
classes in the MPEG-data set are very critical: for certain
classes, the intra-class shape variance (intuitive) is very high,
such that especially for boundaryparts, matching to non-
device classes is more likely. Additionally, these shapes are
highly symmetric and do not add any further information,
such that the randomly selected parts from the query shape
are all very similar (device0/1/2 are stars with different num-
bers of rays. Parts of such shapes are not distinguishable,
these shapes only differglobally). Having a number of simi-
lar parts for the query, the algorithm design resembles com-
parison with a single part. Together with high intra shape
variance, this explains why certain device classes are wrongly
classified. This explains the insufficient performance of the
classification of classes25, 26 (device2, device3).

In certain cases, the boundary information of such de-
vice classes can not lead to any partial similarity at all, see
e.g. Figure 27. The shapes in a single class have no common
partial boundary features; the boundary of members of the
same class is extremely distorted: a partial boundary based
approach must fail in these cases. This explains the incorrect
classification of classes27, 28, 29, 32 (device4, device6, de-
vice9). The remaining device classes have perfect classifica-
tion results (classes23, 24, 30, 31), however, the aforemen-
tioned arguments partially hold for these classes, too. We
therefore decided to eliminate all device classes from the re-
sult statistics of table 3.

8.7 Experiments on Scalability

The time complexity of the algorithm is determined by the
number of iterations and the complexity of the prediction
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Fig. 27 Certain classes in the MPEG-7 set contain extreme bound-
ary distortions. These classes only have a commonglobal appearance,
while, looking at boundary parts, the intra class similarity is very low.
Such classes are hard to use for boundary part based classification. This
holds especially for most of the ’device’ classes, with the examples of
’device6’ (top row) and ’device9’ (bottom row) shown here.We ex-
cluded the results on all device classes (shown in red in Figure 26) in
table 3

step for each particle1. The latter one depends on the com-
plexity to build the constraint matrix. In the case of partial
matching the constraint matrix can be determined inO(n2).
The number of iterations isn, since we aim for complete-
ness. Hence, in this case, the time complexity isO(kn3).

In our current MATLAB implementation, matching of
two full boundary shapes with50 points each takes about
2 seconds on a typical PC desktop (runtime for the follow-
ing examples: computation of 500 points, 50 particles: 15
seconds; 800 points 200 particles: 90 seconds).

Apart from runtime complexity, we examined the per-
formance of the algorithm using different sampling rates.
In digital objects, ’local’ descriptors like curvature areac-
tually ’regional’ descriptors. The underlying neighborhood
size is determined by the sample rate (if sub sampled uni-
formly). A higher sample rate therefore decreases the re-
gional information in each sample point. This generates lo-
cal correspondence matrices containing a high number of
points with similar correspondence probability, see Figure
28. The peaks in the higher resolution version are more dis-
tinct. However, the number of ambiguous points (dark blue)
increases in each row about linearly (a row gives, up to a
constant factor of proportionality, the correspondence prob-
ability of a single point in shape 1 to all points in shape
2). This reflects the significant growth of the set of possible
matching candidates in each augmenting particle update es-
pecially in later iterations, when the peak-correspondences
are already established. Assuming a constant number of par-
ticles, the system becomes more likely to be caught in a lo-
cal optimum, the more points the data set contains. While
the results in a certain range (20-500) of data points with a
relatively low number of particles (50) are satisfying in this
experiment (see Figure 29, a labeling task using800 points
could be handled increasing the number of particles to200,

1 the constant factor depends on the numberk of particles and num-
ber of correspondences destroyed in the recede step

see Figure 30. We leave the strategy to determine the number
of particles to later research.
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Fig. 28 Correspondence matrix of forks (see Figure 29) Left: both
forks containing20 points. Right: both forks containing100 points.
See text for further explanations.

Fig. 29 Correspondences between shapes ’fork19’ and ’fork20’ of the
MPEG-7 data set, uniformly sub sampled with (from left to right) 20,
50, 100, 500 points. The correspondences were computed using a con-
stant number of 50 particles.

Fig. 30 Correspondences using50 and200 particles using a sample
rate of800 points. While the low number of 50 particles was insuffi-
cient (left), an increased number of particles (right) led to correct cor-
respondences.

Please note that this example demonstrated the influence
of lowering the significance of local features. In this case,
the global constraint of order conservation becomes increas-
ingly important. However, this simple global constraint is
too weak to be carried by a low number of particles. The
weakness of the global constraint had to be counter balanced
using a higher number of particles. The next example will
show how the same PF framework, applied to partial match-
ing of 2D point clouds, requires significantly less particles if
the global constraint is defined in a different way.

8.8 Partial Matching of Point Clouds

In this example, we leave the area of boundary comparison
and head towards a more versatile data representation, point
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clouds. The versatility allows to represent shapes with inner
structures, or, more general, of arbitrary topology, see Figure
32. The drawback of this representation is that no canonical
point order information is given. Hence, the previously de-
rived global constraint of order conservation can not be ap-
plied here. We define the global constraints on point clouds
by means of neighborhood consistency. Please observe, that
the PF approach for this significantly different task only dif-
fers in the definition of the GC-update rule (and, naturally,
the pre-processing of local features). We intend to illustrate
the scalability and extandability of our PF approach with
this example, which was previously presented in Lakaemper
et al (2008). The underlying definitions of local and global
constraints can be found in more detail in Lakaemper et al
(2008).

Consistent neighborhoods are defined in terms of dis-
tance consistency of shape points, to points participating
in already established connections. Figure 31 illustratesthe
motivation:vi anduj are points of two shapesS1, S2 in R

2.
d1,2,3 denote the (Euclidean) distances betweenv1 andv2,3,4

as well as the respective distances betweenu1 andu2,3. We
assume an established correspondence(v1, u1), and callv1

andu1 the ’seed points’ for the update. The update values
GC(vi, uj) are computed using the difference between their
distances to the seed points. Only those point pairs(v′i, u

′
j)

should be assigned a low value (close to0.0), where a) at
least one point of{vi, uj} is close to its seed, and b) the
distances ofvi and uj to their respective seeds is differ-
ent. All other pairs should be assigned a value closer to
1.0. The table fig.31, right shows example update values
GC(vi, uj) in accord with the motivation:GC(v2, u2) =

1 sinced1 = d(v2, v1) = d(u2, u1) and both distances
d(., .) are relatively small.GC(v4, u3) = 1 for a differ-
ent reason: both distances are large (= d3), hence no state-
ment can be inferred.GC(v3, u2) < GC(v3, u3) although
|d2 − d1| = |d2 − d3| sincemin(d1, d2) < min(d2, d3): a
correspondence weight between two points which are both
relatively far away from the established points should be less
(value closer to1.0) influenced. The0.0 values for(v1, ·)
and(·, u1) guarantee one to one correspondences. For fur-
ther details on the exact definition of the GC update rule,
please see Lakaemper et al (2008).

d1

d2

d3

v1 v3v2 v4

u1 u2 u3
10.700u3

00.510u2

0001u1

v4v3v2v1

Fig. 31 Updating weights based on a single established correspon-
dence and different distances, see text for explanation.

We used a radius-limited version of shape context Be-
longie et al (2002) as local descriptor. In Belongie et al (2002),
shape context is used for shape matching of complete shapes.
For this purpose, the radius is automatically determined, cap-

turing global shape information. The quality of this descrip-
tor is demonstrated by impressive results using simple match-
ing based on the hungarian algorithm. However, for partial
matching this approach is not applicable: to capture regional
shape properties only, the radius for the shape context com-
putation has to be decreased, leading to failure in the hungar-
ian matching, see Figure 33, left column (max. radius: 0.2).
Our experiment uses a fixed radius shape context (max. ra-
dius: 0.2, compared to a shape diameter of about 1.0), but re-
places the hungarian matching with our PF approach. There-
fore, in contrast to the hungarian algorithm, which does not
respect any global consistency constraints, our re-defined
GC-update rule adds global consistency to the local/regional
shape context feature. The improved results can be seen in
Figure 33.

In contrast to the previous (fork) experiment, where the
local descriptor became weak due to a high sampling rate, in
this case the local descriptor is strong enough to support the
interplay with the global descriptor sufficiently. The experi-
ments were conducted with a very low number of particles:
only 10 particles were required. The data sets contain200

points each.

Fig. 32 Top row: chinese words. bottom row: Our data consists of 200
random samples from a skeletonized version of the top row. Wewill
find the partial match between (top row in reading order) a,b;c,d; e,f.

9 Conclusion and Outlook

We presented a Particle Filter framework to solve the corre-
spondence problem. The performance was demonstrated on
partial shape matching of2d polygonal boundaries, which
was solved through a windowing approach. The window
was learned during the iterative Particle Filter process. Fur-
ther examples demonstrated the extendability to a more ver-
satile data representation, point clouds. Though the exam-
ples of this paper were restricted to2ddata, the PF frame-
work can handle arbitrary dimensionality. Future work will
therefore focus on3D shapes.3D shapes pose a special
problem, since the number of data points is in general much
higher. In order to tackle this problem, an appropriate GC-
update rule will be specified. Additionally, the recede step,
which currently chooses deletion candidates from a uniform
distribution, will be extended.
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Fig. 33 Partial matching of data in fig.32 based on local descriptor
’shape context’. Left column: approach of Belongie et al (2002), using
the Hungarian method. Right column: our PF approach.
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