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Abstract Constructing correspondences between points chasfrespondences between sets of data points based on their
acterizing one shape with those characterizing another shape properties. This includes the construction of corre-
crucial to understanding what the two shapes have in conspondences between shapes and parts thereof. In the sequel,
mon. These correspondences are the basis for most aligwe equate shapes with sets of points sampled (approppiately
ment processes and shape similarity measures. In this pagfesm them; each such point has one or more (local) features
we use particle filters to establish perceptually correct co assigned to it. Examples of such local features include cur-
respondences between point sets characterizing shapes. Mature (if the shape is defined by a surface, Mokhtarian et al
cal shape feature descriptors are used to establish the pra2002)), point density, shape context Belongie et al (2002)
ability that a point on one shape corresponds to a point oand features based on the Poisson equation given in Gorelick
the other shape. Global correspondence structures are cal-al (2006). Selecting which local features to use depends
culated using additional constraints on domain knowledgeon the particular setting and goals involved. The challenge
Domain knowledge is characterized by prior distributionsis to determine correspondences between shapes using local
which serve to characterize hypotheses about the glolzal reldescriptors in a globally consistent manner. This chakeng
tionships between shapes. These hypotheses are formulatadludes resolving the competing claims between local and
online. This means global constraints are learnt during thglobal descriptors. We do this by embedding global con-
particle filtering process, which makes the approach espestraints in an iterative algorithm, learned by the system in
cially interesting for applications where global consitai a feedback process.

are hgrd to define a priori. As an example for such a case, e approach the correspondence problem using Particle
experiments demonstrate the performance of our approaditers (PF). Particle filters employ probabilities and tiul
on partial shape matching. ple hypotheses to build correspondences between shapes.

In our setting, we assign a probability to each possible
configuration of single point correspondences. It is based
on the fitness of participating single point-point corraspo
Finding correspondences between visually similar featured_ences' We model the visual correctness (_)f corres_pondences

nV|suaIIy better correspondences are assigned higher prob-

of pairs of shapes is a classical problem in Computer Vision.

For example, Belongie et al (2002) defines a threefold pro:_aibility values. Under certain assumptions, this assigrimen

cess for distinguishing shape similarity; his steps inel(l leads to the calculation of probabilities for seqiic_eiiceS)of c
constructing correspondences, (ii) aligning shapes with o respon_d:ences, cglled p])carticlles b_er:ow. F,’“?b""lb"'“e‘?m
another, and (iii) employing measures of similarity for com to I?a(;t,'l(_:kesl'_r?rea'rf EOT orrr_}irt]y W'It bs}atistic_a terminfg_io
paring shapes with one another. Clearly, robustly establis cated 1 G]f' ood S, DEIOW. d? g% a coniirs]tency © hpar
ing correspondences is a crucial step in such a process. oflfs is enforced using prior distributions. The search epac

research aims at a general description of how to construPnsIsts of the set of all possible particles.
The goal of particle filters (PF) is to estimate the poste-

Address(es) of author(s) should be given rior distribution over the entire search space using discre

1 Introduction




distributions (constructed dynamically at each of a numbeeasier to characterize, yet not to specify global congsa&in
of different iterations) based on a limited number of parti-detail. For example, for the partial shape similarity in Sec
cles. In this sense, particles represent hypotheses alatit w tion 7.4.1, it is natural to expect the result to be in a cartai
the true relationship between shapes really is. The best cavindow of the target shapkearningin our system means,
respondence is the most likely particle (Maximum Likeli- that we only characterize the task formulating 'there is a
hood Particle, MLP) surviving at the end of the PF processvindow’, yet leave the computation of specific parameters
Liu (2002). (in the example: the window’s location) to the feedback sys-
All particles compete in an iterative process, each itertem feeding the 'GC update rule’ (Figure 1). We use prior
ation consisting of two steps: prediction and evaluation. | distributions, built conditionally at each iteration, toferce
the prediction step, particles are augmented by addingesingthe learning constraints.
correspondences; the resulting set of particles is cafledt ~ This leads to a system in which the likelihood of cor-
'preliminary sample’. Correspondences are selected basadspondences is defined via: (i) a matrix representing local
on a correspondence-weight distribution, which repressentconstraints, and (ii) an update rule which iteratively gene
single correspondence probabilities as defined by the locaites a second matrix specifying parameters of global con-
feature descriptors. Using Bayes rule, each particle is astraints. The update rule implements the feedback cyclighwh
signed a weight representing its strength, proportiondsto enables the system to learn global constraints. Figuras-ill
posterior probability. The evaluation step selects pladic trates this idea.
from the preliminary sample using these weights. We eval-
uate particles using residual sub-sampling, see e.g. lal et
(2000). This selection causes stronger hypotheses (legitic
to dominate weaker ones, yet randomly permits some wez
hypotheses (outliers) to survive and possibly prospettar la
iterations. In this way we protect against choosing pagsicl
which are only local maxima (Liu et al (2000)).

We augment the PF algorithm by incorporatingea
cedestep which destroys correspondences in particles. Th
introduction of a recede step insures that the entire spac -_ !
of (possible) particles can be visited from any given parti-
cle configuration. In the setting of sequential Markov Chain
Monte Carlo, recede steps could be referred to as ‘avolutiorfig- 1 Gl_obal and local constraint_s influence the PF process. The cu
steps. Evolution steps typically serve as transformations rent particle and the local constraints are fed back to wptteg global

. constraints ('GC update rule’): global constraints areried during
already constructed particles. the PF process.

Apart from the recede step, in this paper we do not focus i _ i
on the question of how best to improve the PF itself. There 1€ Sections are organized as follows. After relating our
are many different ways of designing particle filters; eachVOrK t0 existing approaches, we will introduce our PF ap-

such design is associated with techniques which optimizBroaCh along the example of finding partial correspondences
their performance, see Moral et al (2006) in 2D boundary curves. We first describe the specification

Themain contribution of our research is to introduce for local constraints (Section 3.3). Section 4 introdudes t

the use of PF to solve the correspondence problem, an ptimization problem to find consistent feature correspon-

. - ences. The Particle Filter approach to solve this problem
more specifically, the problem of correctly designing the, . i :
L o . . is topic of Section 5. Section 6 covers an example of the
prediction step. Prediction is based on an iteratively tgxtla . : . ;
A T PF process. Section 7 explains how to build matrices to de-
feature probability distribution. This distribution isroposed . . .
L . scribe global constraints for different correspondenskga
of two parts: (i) the local part, representing the correspon o ) . .
L ; Specifically, Section 7.4 describes how to use the Particle
dence probability based on the local feature descriptads, a ~. . ) .
» . : Filter framework to find partial correspondences. Experi-
(i) the global part, representing non local constraintse T . )
. . . . __ments and results can be found in Section 8.
global constraints can describe topological or geométrica
features of the shape and are used to achieve global consis-
tency. They are built into each iteration of the PF process,
enforced using the (conditional) information availablenfr 2 Related Work
the already constructed correspondence sequence. This has
the advantage of allowing us the easy taskeafningspe- The process of finding correct correspondences can be seen
cific parameters of global constraints at each iteratidhgra as a labeling process. The features of one shape correspond
than the hard task of predicting them a priori. In generd, it to the labels; the features of the other have to be labeled.




In Rosenfeld et al (1976), Rosenfeld introduced the techScott and Nowak (2006), we do not need a designated start
nique of relaxation labeling (RL) to approach this class ofcorrespondence and handle shape-reflection (clockwise/an
problems. It has since been a topic of successful ongoingockwise order of boundary points) automatically. We also
research (Haralick and Shapiro (1979), Kittler and Illing-don’t need additional parameters characterizing the mini-
worth (1986), Yefeng Zheng and David Doermann (2006))mum number of correspondences.
In the soft version, a weight matrix defines the correspon- RL is a common way of computation for Markov ran-
dence probabilities between data point and label. The progtom fields (Qian and Titterington (1992)). Typically, this i
erty of consistency is defined in terms of certain given neighvolves specifying a prior over the search space of particles
borhoods. RL is used to solve an optimization problem subat any given iteration conditional on all others. This diffe
ject to the given consistency requirements. from the priors advocated here which are defined conditional
RL is a gradient descent method which guarantees coren previous iterations. We leave comparisons between this
vergence towards some local optimum. It is an iterative, deapproach and ours to future work. Another single hypothe-
terministic approach, highly dependent on the initial eerr sis probabilistic approach to find correspondences is given
spondence probability matrix. In this same connection, ouin Alt et al (2006). It evaluates shape matchings based on
approach can be interpreted as piecewise sequential, noproperties of the correspondence set itself, thereforesfoc
deterministic, multiple hypotheses relaxation labeliBg-  ing on the global shape properties.
quential, because of the aforementioned prediction stefgiw  An interesting example of specific 2D-boundary match-
assigns ainglelabelunchangeablyo a data point. 'Piece- ing is given in Chen et al (2008), applying a local-sequence
wise’, because sequences of correspondence labelingaare kilignment algorithm originating from bio-informatics toro-
ken by single re-labeling recede’ steps’. By contrastdol®e  puter vision. Chen et al (2008) successfully strives for en-
iteration, relaxation labelinge-labelsall the datasimulta-  hanced performance on the particular problem of bound-
neously PF enhances strong local feature properties, whilary matching, demanding for the ordered point sequence as
RL subsumes them, enhancing the global labeling structure. necessary condition. Specializing on this problem, such
For these reasons particle filters have the drawback of b&n algorithm can achieve faster performance (in Chen et al
ing easily lured into local optima. This drawback is coun-(2008): O(mn)), yet is not easily extendable. In contrast,
terbalanced by the assumption, at each iteration, of meltip our PF system framework is based on feature matching with
hypotheses which compete with one another. a high versatility: the presented experiments on boundary
Our research is designed as a general framework, yet thgart matching (Section 8) should be interpreted as exam-
examples and results explore the particular case in whicples. The input to the core PF system is a feature corre-
correspondences are built betw@edimensional boundaries. spondence probability matrix, describing local feature co
Sebastian et al (2003) showed the importance of orderinggspondences, as well as a function to evaluate the global
constraints in matching curves. We use this constraint as aronsistency of hypotheses (GC update rule in Figure 1). The
example. It shows how to integrate the constraint of contidesign of the input depends on the application, the core PF
guity conservation for the simpler case of non-partial shapsystem (right side in Figure 1 works independently.
matching. This special case can also be solved using Dy- A PF based point cloud alignment system is presented
namic Programming (DP); successfully applied e.g. in Mil-in Sandhu et al (2008). Based on an Iterative-Closest-Point
ios and Petrakis (2000), Scott and Nowak (2006), SchmidiCP) update step for each particle, it finds the optimaldran
et al (2007). Particle filters PF guarantee only a nearly opformation of rigid bodies to minimize a least-square fitting
timal solution, as compared with DP methodology whichtarget function. In a nutshell this system can be described
guarantees an optimal solution in this case. Nonethelesas multiple hypotheses ICP. Finding the optimal embedding
particle filters generalize in cases where DP methodologgf a query part in the target shape’s 3D coordinate system,
does not. For example, particle filters generalize easily tit leads to impressing results yet is limited to rigid body
the task of building shape and part correspondences. Our firansformation, since the underlying feature used for fpoin
nal result shows how we learn constraints in the example aforrespondences is the points’ location. In contrast, ¢ur P
partial shape matching, used to build similarity measuses f system finds feature correspondences based on a feature-
purposes of querying shape databases with shape parts. distance function, which is more versatile than the direct |
Since local descriptors are imprecise, the optimum, calcation comparison. See Section 8.3 for an example where a
culated using these descriptors, is not necessarily a neere aspatial alignment system like Sandhu et al (2008) would be
curate solution; an example is given in Section 8.1. We notékely to fail.
that the prediction step for particle filters, describedva)o Particle filters have been successfully utilized in both
samples a new correspondence from the possible correspddemputer Vision (mostly for object tracking, Rathi et al
dences; this selection does not depend on any implicit or eX2007) and image segmentation, de Bruijne and Nielsen (2004
plicit ordering of features. In contrast to the DP approach i and robot mapping, Thrun (2002). An interesting example,



in a broader sense related to our system due to applicatiarey of shape-matching approaches is e.g. given in Veltkamp
of Particle Filters to solve an optimization problem, is aco and Hagedoorn (2001).

tour extraction algorithm (JetStream) presented in Pdralz e General information about particle filtering is given e.g.
(2001). In there, the target function is a functional over th in Doucet et al (2001), Liu (2002).

search space of plane curves, taking into account certain op

timality features to achieve smooth, edge fitting curve® Th

impressing results demonstrate the applicability of trebpr 2.1 Notation

abilistic PF approach to Computer Vision problems.

. S . If we deal with closed shape boundaries, all index-math is
PF, if used to solve optimization problems as in our case,

are similar to general Evolutionary Algorithms (EA) Hol- Understood module;, the number of points on the bound-

land (1975), Goldberg (1989), Back et al (1997), in the sens%ry' Thrqug.hou.t the papeqag(:v) will d.en.ote the mear
e T . auss distribution with standard deviatienof a random
that determining peaks of a distribution can be interprated

an evolution strategy, or 'survival of the fittest’. The esd- \r/z:fsblﬁglc\;vr?jilrjlsaﬁtb (:)'fn ;;mflng?ﬁ;tfiigé?} :Ml ' |?\|/[d;-
tion of a distribution, which PF aim at, is utilized to make a y g L2 S0

. . . M- denotes the element-wise multiplication. For all colored
delayed decision about the selection of an optimum. TherF th | lei o Fi 7 right
are many analogies between PF and EA. Relating our Spe|gures € color scale Is equalto Figure £, ght.
cific PF case to EA, each individual represents a hypothe-
sis of a configuration of correspondences between points %f Local Constraint: Features and Correspondence
the query and target shape. The weight function provides

fithess, or aptness for each individual, which reflects the lo

cal feature correspondence fitness, the global configuratiqp, oy setting, a shaps; = vy, .., vy is represented by a uni-
consistency and the completeness of the configuration. Th’%rmly sampled2d boundary polygon with vertices (see
individuals develop in an augmenting manner to find a singigyre 2). We note that different shapes can have different

gle optimal individual: starting with no correspondendBs,  mpers of vertices; to each of these vertices we assign a
individuals add single, promising correspondences. Tis € ,,mber of different feature descriptors.

ables the approach to focus on likewise promising, relbtive
small subsets of the huge search space. To compensate ef-
fects of development aberration, we allow the algorithm to
step back in the development of individuals: a 'recede’ step
allows individuals to delete inconsistent correspondsioée
their configuration, which might have been chosen prema-
turely in earlier stages of development.

Finding correspondencesis closely related to shape mafd#-2 Objects crown-01, bat-01 and devicel-01 from the MPEG-7

ing: having correspondences at hand, shape matching isvacfiit® Set. The starting poini is marked, the objects are uniformly
. . o . sampled counter clockwise using 50 points.

by adding alignment and shape-similarity steps Belonga et
(2002). In shape matching, these three steps do not neces-
sarily have to be separated, and are often combined taking The combination of local feature descriptors will be used
advantage of special features of specific applicationson=xa to generate a matrix of local correspondence likelihoods be
ples of shape matching algorithms can be found in Ling andween pairs of point$v;, u;) € S1 x S2. The current im-
Jacobs (2007), using the ’inner distance’ between boundglementation applies two feature descriptasvatureand
ary points as a basis for shape feature description and shalpeal distance-signaturéhese are examples for descriptors,
similarity. Siddiqi et al (1999) derives shape features andt is not focus of this research to find or explore optimal lo-
similarities from 'shock graphs’, based on a curve evolutio cal descriptors). Their descriptive power is limited, yetyt
process, acting on bounding contours. Using evolutionaryeveal a certain amount of local shape information. The lim-
properties of boundary curvature turning points on multi-itation of these descriptors is reflected in the ambiguity im
ple scales, Mokhtarian et al (1996) introduced the 'curvaplicit in the correspondence between vertices: a single ver
ture scale space’ for shape boundary comparison, which iex of shapes; can have a large number of possible partners
the introductory work for the previously mentioned paper(vertices with similar features) in the second sh&peand
Mokhtarian et al (2002). A related approach, yet more taivice versa. In this setting, insufficient regional or glotel
lored towards the discrete nature of shapes represented bgriptive information provided by local feature descriptis
polygonal boundary curves, Latecki et al (2000) derives anot necessarily a drawback. A certain amount of ambiguity
boundary partitioning scheme and matches parts of conallows for a wider variety of possible local hypotheses for
plete shapes using a dynamic programming approach. A sueach patrticle.

Rratrix




Sections 3.1 and 3.2 describe the local shape featurdsll shape. Experiments show that such a value includes suf-
used in this setting to find a (partial) correspondence beficient information, (see the example in Figure 3). In such
tween shape boundaries. Section 3.3 introduces and describ casesr,, = 0.2 already contains significant information,
the local correspondence matrix. The local correspondena@nce it accurately characterizes global properties, tyist i
matrix is constructed from shape features. small enough to react to regional properties.

3.1 First Local Feature: Local Distance Signature

Let the shape consist ofk vertices,S = {v;,..,vx}. The

local distance signaturd DS(v;) of vertexv; is a scalar
value that contains the normalized weighted average Eu- |
clidean distance betweenand all other vertices; € S~ = i
S\ {vi}. The weightw;; of the vertexv; € S~ depends on

the boundary distancé, (v;,v;) (the shortest distance be-
tweenv; andv; on the boundary polygon)j = 1, .., k; j #

i. The aforementioned weights define a neighborhood of in-

fluence forv;: they are defined by: Fig. 3 LDS (right) of a shape (left) using different values fer,,
vi y y boundary length of shape is0. A neighborhood defined by = 0.2
already contains significant information, which can be $Beits struc-

wij = P, (dp(vi, v5)). 1) Y 9 ana

tural similarity to the global case; — co. The shape (left) consists
of 50 points, starting with the bottom-most point, ordered ceunt

We will describe below how to determiag,. Below, we use clockwise.

the notationd,. (v;, v;) to describe the Euclidean distance
betweenv;,v;. The weighted (not normalized) average dis-
tancelds(v;) (betweerv; andS ™) is defined by

Z§:1 wijde (vi, v;5) @ 3.2 Second Local Feature: Curvature
- .
2= Wi ThecurvatureC'V (v;) is the signed turn-angle as measured
LDS is the normalized and therefore scale-independent vefrom vertexv;, assuming an anticlockwise orientation. Con-
sion oflds. We require thal. D S(v;) is 1 for a pointy; with ~ vex vertices have negative curvature values (i.e., they are
average LDSn its neighborhoodHence, we definé DSto  the vertices joining an oblique angl&)V (v;) € (—m..m).
be the weighted average &ifs. To obtain a more stable curvature description, we smooth
the curvature values using a gaussian blur filter (selection
k curvature algorithm is not critical, different techniquead
ls(vi) 2251 wis to similar results).
LDS(v;) = —f——L—— 3)
ST wiglds(v))

See Figure 3 for an example of a shape andLif3S
values.L DS is designed for the purpose of partial match-

ing; it takes into account only a certain neighborhood adounyyhile .05 andC'V reflect properties of a single shape, the

each given vertex. The size of this neighborhood is charaggatyre correspondence matrix reflects the correspondence
terized py the parqmeterw; -thIS parameter reflects regional probability of point pairguv;, u;) € S1 xS, based on fitness
properties of the given vertices. The valuerpfdepends on - 4f the |ocal featured. DS andC'V. This matrix defines the

the performeq task: if entire shapes are matched ( €., NOf5ca| constraints of the point correspondence problem.
partial matching), large values ef, should be used. In this We assume two shapss, S with &1, k- vertices respec-

case,LDS reflects global shape properties. Smaller valuesj ey and define theset of correspondencesas set of all
of 0., reduce the information contained in LDS. The patho-pairS of vertices of; and.S,.

logical case in whicla, is taken to be very small, leads (via

equation the aforementioned equation) to the assignment gf — {(vi,uj)|v; € S1,uj € Sy} =81 x So

LDS values which are 1 for all vertices. In contrast, for par-

tial matching (i.e. matching a full shape with a part (of it- We assume a correspondence probability funcigrover
self)), a smaller neighborhood characterized by smaller vaC. P¢ is defined by thdocal correspondence matrik =
ues ofo,, have to be assumed. In case of partial matching|/;;]. L is ak1 x ke matrix containing the correspondence
we takeo,, to be20 percent of the boundary length of the probabilities, i.eP¢(v;, u;) = l;;.

lds(v;) =

3.3 Local Constraint: Feature Correspondence Matrix



Fig. 4 Properties ofLDS andCV. Left column: shape5;, a single
vertexv,, highlighted (arrow). Second columii;, ps(i'j), the LDS
based correspondences betwegne S; and all vertices:; € S (see
Equation 5). Stronger red denotes higher corresponderatzipitity.
Third column: Loy (i5) Column 4: joint probabilityL. All colorings
are normalized, i.e. use the entire range of black to redetbe they
do not reflect absolute values. Top row: whil®S gives a good es-
timation, CV is ambiguousL shows good fits due té; ps. Second
row: LDS andCV both lead to distinct correspondencésshows a
high probability for the correct fit. Bottom row: Boti,DS andC'V
are ambiguous, leading to a variety of correspondencés .ilshapes
used are bat-01 and bat-05 of the MPEG-7 test set, uniforamped
with 50 points.

computed by replacing D.S(v;) with LDS(u;) in the de-
nominator of eq.4. This is followed by column normaliza-
tion.

Finally, L} ps is the normalized joint probability

LIo L}
k1 k1 T ]C ’
Dim1 2 (505)

Definition of L ps by L! and L. is motivated by the
view that L} reflects the probability of correspondence be-
tween points; andu; in the context ofs, while L! reflects
the probability of correspondence betwegrandw; in the
context ofS;. Figure 5 illustrates the necessity of this step:
two similar features in two different shapes can have differ
ent correspondence likelihoods, depending on the number of
similar features in the other shapk; ps is defined in this
way for purposes of ensuring cognitive symmetry; we do not
draw a distinction between query and target shape.

Lips =

(%)

The probabilities are based on the local feature descrip-
torsLDS andC'V described in sections 3.1 and 3.2. In gen-
eral, each feature descriptor generates its own probabilit
matrix, the final local correspondence matfixs the joint  Fig. 5 Different correspondence probabilities in different dtiens
probability, i.e. the element-wise product of the respecti (hypothetical example, values not based on actual localifes):
matrices. In our case. we first obtain two correspondenc@l — So: the correspondence probability between the highlighted

. : ' points is1/3, since the point inS; can find3 equal partners irs>.
r_natr'ceS_LLDS and_LCV’ based onL.DS andCV respec- |, contrast, in directiorsy — S; there’s only a single partner for the
tively. L is then defined by. = Ly ps ® Loy . point in S2, hence the correspondence probability.is

The following will describe how to computer, ps. Loy

is obtained accordingly.
gy The feature correspondence matfixy, based on the

curvature feature, is derived accordingly. Figure 4 shows
different correspondence cases to illustrate the beha¥ior

We first compute the correspondence likelihood based on thl'eDS and Cv.

distance betweeh DS features. Lef.! = [l}j] be ak; x ko
matrix with entries

|LDS(v;) — LDS(u;)|
LDS(UZ)

3.3.1 Correspondence Matrix based b.S

3.3.2 Local Correspondence Matrix L

L is the element-wise product éf;, ps and Loy :

lilj = d)t‘!z (

)- 4)
L=Lrps®Lcv (6)

(The index 1’ in L' points out thatL D S is the first of two
local descriptors, without regard for ordes).is a scale in- In general,L is computed by the joint probability of an ar-
dependent parameter that we determine experimentally (weitrary number of feature descriptors, i.e.
useo; = 0.1). The vaIueslilj are normalized byL DS (v;).
l}j describes the likelihood of the correspondence pai . ) .
S — uj € S,. We defineL! as the row-normalized version L' =17 © L7 ©..© L™
of L' for purposes of constructing the directed correspon-
dence probability ob; — u;.

For reasons of symmetry, we compute the directed cor-— L reflects the probability of correspondence between
respondence probability of; — v; analogously, i.eL! is S1 andu; € S.

L has the following properties:



— L reflects the correspondence probability based on ak Correspondences and Groupings
local feature descriptors.
— With S| = Sy andS, = Sy, L(S1,52) = LT(S;,S5);  As mentioned in Section 3.3, the matiixdefines a prob-
L is order invariant (except transposition) with respect toability P over the set of correspondence$t (v;, u;) =
S1, Ss. This of course doasotmean thaf_ is a symmet- ;5.
ric matrix. For matrix-symmetry the following hold&: A Groupingg € G is a member of the power sBt of
is symmetrice S; = Ss. C. A grouping defines a configuration of correspondences.
— The correspondence matrix of two identical shapes G defines the search space for our PF process. Each element
S1 = S, is not necessarily diagonal dominant. However,g € G takes the forny = {{v;,,u;, }, .., {vi,, u;,}}. Fur-

more similar shapes result in stronger diagonals. ther constraints (e.g. contiguity conservation, see 8eat)
— In the case of closed boundaries, the matrix must be inen groupings can limit the search space to a sufset G.
terpreted horizontally and vertically periodic, i.e. itas A groupingg is completeif it is maximal with respect

torus (for a nice visualization see Schmidt et al (2007))to the containment ordering in the g8t . In quantitative
Although this is not important to the interpretationfof terms¥¢' € G~ : gCg —g=4¢

as a correspondence probability distribution, it has an ef-

fect on all operations involving the matrix-topology, e.g.
Fig. 7 Left: Incomplete grouping, each blue line shows a singleezor

contiguity conservation, see Section 7.

spondence. Center: A complete, strongly contiguity consgrgroup-
ing. Right: Connectivity matrix of the grouping (centemipgrimposed
over correspondence weight matiix Each red dot is a single corre-
spondence (red dot means connectivity matrjxilote that the group-
ing is complete although not all points are participating.

Figure 6 shows examples of correspondence matrices.

Figure 7 shows examples of both non-complete and com-
plete groupings. These are computed under the constraint of
strong contiguity conservation (see Section 7). We use the
notation,G~ for the set of contiguity conserving groupings.
We interpret groupings using the edges of a graph with ver-
ticesS; U S5. Figure 7 displays this graph in two ways: (i) it
is superimposed over the correspondence probability matri
L; and (ii) edges are drawn using the connectivity mafrix

4.1 Optimal Sets of Correspondences

Fig. 6 Correspondence matricés, ps, Loy, L (columns 1,2,3) for
objects crown-01 (top row) and bat-01 (middle row) and deli61  \\e define the weight of a grouping as,
(bottom row). For simplicity, we here compared the objecthtem-

selves (see Figure 2 for objects); i.e. top row=crewgrown, middle gl gl

row=bat-bat, bottom row=devicedevice. Top row: The south-east _ N o

area of the crown matrices contain more information, siheeshape Wa(g € G) = Hexp (Fe(vi, uﬁ)) - H exp (L le) - (1)
=1

features (spikes) are more distinct. Since the first 25acesttontain no =1

distinct information, the diagonal in the North West panvisak. Mid-
dle row: the 3 distinct spots on the diagonallgf p 5 are the wing-tips We formulate the CorreSpondence problem as one of choos-
and the tail.L has a relatively strong 2nd diagonal, caused by globaling the complete groupingj € G~ from the set of con-
symmetry in the shape with respect to the axes through thg-tips.  strained groupings;— with maximal weight or, more specif-
Bottom row: the effects of symmetry and spikes are cleargjble in ically

the matrices, showing high ambiguity in The local ambiguity has to ’

be solved by the Particle Filter system using global comgsa .
g=arg ;Iéé{((Wg (9))- (8)

Lemma 1 The optimal grouping is complete.



Proof This is a direct consequence of the fact that correSection 7.4 explains our solution to this problem. We use
spondence weights are defined to be larger than hypothetical, iteratively inferred global constraints.
Pe(vi,,ujy,) € [0..1] = exp(Pe(vy,, uj,)) > 1.

The lemma shows that groupings with more correspon> Near Optimal Labeling using Particle Filters

dences dominate those with fewer correspondences. This is _ _ _

in contrast to the joint probability[ (1;,;, ), which decreases Below, we refer to a grouping € G~ as a single particle.

as the number of correspondences increases. We employ the notationy.; for a particle at time (or itera-
The optimal grouping can therefore be understood as tion) ¢. Particles are built by adding single correspondences

search for a grouping with as many connections as possibl@j‘ each iteration. Corres.pondence.s are selected basgd on a
subject to optimizing the overall weight. Dynamic Program-C0réspondence probability™*. W* is an updated version
ming (DP) methodology in Scott and Nowak (2006) Con_of the cor.requndence-wellghtdlstrlbuanThe u.pdate of
structs optimal shape matches under the constraint of corz — " is defined by additional global constraints, which
tiguity conservation; this is a special case of the aformen®ill P& explained in Section 7. The following sections will
tioned optimization problem. In contrast to the DP approach®Plain the prediction and evaluation step of PF in our set-
which gives smaller weight to groupings with larger num-1ting. as well as the new step icede In what follows we
bers of correspondences, we need no additional parametétS€ the definition: all correspondences adenissibleat it-

to ensure that the optimal grouping has some minimal nun€rationt = 1. Atiteration? > 1, a correspondenaec C is

ber of correspondences. This is a consequence of our use #Missible if, for a given particlg,.,—, € G~ (at iteration
complete groupings. t — 1), the particlegy.; = g1..—1 U cisin G—. Admissibility

Specific tasks of shape matching, like the matching 0%herefore means being in accord with global constraints.

parts, require far stronger constraints. Typically, isttase, . Vr\:h”g;hlfs (_j(_aﬁnltlson (.)f ac;mlﬁls!blht);lby SUbSit re:jatlfgq
additional domain knowledge is required to achieve succes® & hara ae Inition, Section 7 will introduce a softer defini-

Particle filters are well designed to properly formulate anation' using global constraints defined by probabilitiese Th

use this knowledge: we employ them below for this purpose(.:ase of hard admissibility is modeled using probability val

It will be seen that this approach provides more flexibility i ues of0 and1.
solving the optimization problem when these additionalcon
straints are present. PF enable us to learn constraintsgduri
the iteration process. This enhances our ability to fincebett
particles.

Intuitively, the advantage of the PF approach follows
from the fact that PF is able to track preliminary optimal
solutions of achangingweight distribution which, in tum, .10 te the posterior probability of the resulting augreent
define a changing target function during the Opt'm'zat'orbarticle.
process. Using this property we are able to interpret the op-
timization task eq.8 in a better way. We do not optimize
the target functionV(g), which is based on a static, non-

changing weight mqtmL and_a restncted_ search SP@G' (¥Vt is the updated version df (at iterationt) incorporating
Instead, we dynamically adjust the weight function base ) . .
global constraints given by a matri&gC'(g1.¢). GC(g1:¢)

on the current state of the particle and an inferred global . ) : .
) . . itself depends on the particlg.; at each iteration. In this

constraint. The search space is restricted to corresporden

with probability greater than 0. Expressing the global con>ENse, We have,

straints as an iterative adjustmen.t to the local coqstrauht Wt =L GC(g14). (9)

lows us to infer the global constraints themselves in aaiter

tive manner. We therefore do not have to precisely define thRiote thatGC/(g;.;) changes from one particleto the next

global constraints a priori. Short: the presented fram&worand from one iteration to the next. This enables us to ad-

allows for adjustability of the cost function as you movejust or learn constraints during the PF process. Section 7

along in the optimization, while standard optimizationfitec will give examples of such constraints. For single corr@spo

nigues have a fixed energy function. Section 7 will give ardences we use either the notatian if we want to stress

example of different global constraints and their usagbént that a correspondence is selected at tiper ¢;j, to denote

PF system, compared to classic approaches. the event that a correspondence between i and j is selected.
This is helpful in cases where such definitions are dif-We refer to the update of a grouping g using the notation:

ficult to use. Partial matching provides an example of thisgi.: — g1.¢41 = g1.+ U ce1. We employ the notatiorng,

5.1 Prediction Step
The prediction step consists @fparts: a) select a corre-

spondence based on the updated probability distribGtién
over all admissible correspondences C at iterationt. b)

5.1.1 Distribution for Correspondence Selection



or, shortw?, for the log-likelihood associated with the selec-
tion of the correspondeneg; (or ¢,) at timet. Correspon- .
dences are selected according to the marginal probasilitie 7, (g,.,) ~ 7Tt71(g1:t71)L. (14)

t
ZyGA[gmfl] Wy,

eXp(ng)
Pleij) = >, exp(wt)) So, choosing correspondences according to the probabil-
ities P(c: | g1..—1), (t = 1..T') serves to generate groupings
5.1.2 Why Particle Filters are Useful for Constructing which make the product of weights, given in equation 12,
Shape Correspondences large (see Crisan and Doucet (2002) for a more complete

discussion on the convergence properties of particle dilter
As mentioned before, each partigles G~ is a set of cor- in this setting).
respondences, whe¢k is the state space that contains all ~ Please observe that equation 14 only holds if the weights
admissible particles (=groupings). We use the terminologyy’ don’t change significantly over the iterationor the
G, for the set of all particlegy., = (c1,¢2,..,¢) havingt  selected correspondences This poses a constraint on the
correspondences. The goal is to find a good set of corresponeight update, defined by the global constraint: the most
dences that is complete. At each stage, as a consequencegtdbally consistent correspondences must not be changed
admissibility (global consistency), the weight$ attached  significantly. Examples for global constraints obeyingsthi
to correspondences are altered, i.e. for correspondgfce constraint are given in sections 7 and 8.8: while Section 7
in generako}; # wf;.“l. We use the notatiom, for the prob- introduces 'hard’ constraints, where weights belonging to
ability measure, defined of, having the property that it admissible correspondences are multipliedibythers by
is proportional to the product of the weights associateti wit 0 (which surely does not change the weights of admissi-
the correspondences. ble correspondences), Section 8.8 introduces a 'soft’ tiegpda
multiplying the weights with a consistencyn.1 (1 = con-
T(g1:) o wh, ...wl, such thatz mi(g1e) =15 t=1.T sistent): the weights of most likely correspondences to be
(10) selected are only minimally changed, while inconsistent co
respondences have a significant weight change, but become
The dynamic model is specified by the probabilityof  increasingly unlikely to be selected.
divided by the probability of;., 1.

P(ct | g1:4-1) = % (11) 5.2 Evaluation Step

Assume that the index of the maximum groupingis = We use the standard evaluation technique of residual rglgagn

The goal is to findy;.r which maximizes (see, Liu et al (2000)). We do not focus below on optimizing
T the evaluation step for our correspondence task.
P(g1.7) = 1,1 P(ct | 91:4—1)

— HT 7t (g1:)
t=1 7 1(g1:t—1) (12)
= mr(g91:7) 5.3 Extension of Classical PF: Recede Step

T
X Ht:l we,

- We augment the algorithm by incorporatingexedestep

This problem is a standard one in the Particle Filter “ter'which 'destroys’ correspondences in particles. The inimed

f’;\ture, sge e.g. DeIMorr?lI etal (2007). Me-thods for ?Ons{rUCttion of arecede step is crucial to insuring the propertymof ’i
ing particle filters of this sort are also discussed in Doucef

educibility’ for the underlying algorithm. The property o
et al (2001) and Doucet et al (2006). Y ying a'd property

X irreducibility insures that any particle can be reachednfro
We use the notatior[g..;—.] for the set of correspon- 5 giher with positive probability. Irreducibility is aer
dences:, which make the grouping,., possible. Our Parti- i) teature of all Markov Chain Monte Carlo (see Liu et al

cle Filter, at timef, selects correspondences according to th?ZOOO)) Particle Filter algorithms: it insures that sumiy

probability particles converge (in distribution) to the maximum valtie o

equation 7 The introduction of new proposal steps is typi-
. w}, cally accompanied by the use of Metropolis Hastings based
Pler | gri-1) = =——- (13)

move probabilities. Such probabilities are designed to-(ra

domly) determine whether to accept a recede proposal. Their
But this probability? has the property that it approx- use in this context was deemed unnecessary for two reasons:

imatesﬂ’”ﬂ. This is a consequence of the fact that, (i) The particle filter construction itself automaticalletg

t—l( lzt—l)
approximatgly, fot = 1..T rid of unlikely particles resulting from such a step, (ii)&h

t
ZyEA[gl:t—l] Wy
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way in which particle weights are calculated makes it dif- — GC(g1.;) contains correspondence probabilities based
ficult to properly compare particle fithess before and after on global features. Sina€C/(g;.;) usually depends on
recession: the number of correspondences per particle play ¢i.¢, itis in general not known a priori but generated dur-
a crucial role in determining particle survival. As a conse- ing the PF process. The rule to builé{”(¢;.,) defines
quence, it is important to insure that the particles havé-sim  the feedback learning process between the particle and
lar numbers of correspondences. the global constraint at time('GC update rule’ in Fig-
Recede steps can be implementedin many differentways. ure 1. Each particle uses its own global constraint ma-
For the aforementioned reasons, we have designed the re- trix. In special simple case&C' can be independent of
cede step in such a way that everth iteration, a certain g1:+ and known a priori. The simplest example is the case
numberd < r of randomly selected correspondences are of no global constraints, whei@C' consists entirely of
destroyed for each and every one of the particles. This guar- 1sin every iteratiort.
antees that, in early iterations, all particles have theesam
number of correspondences. In later iterations, the number
of correspondences per particle depends on the property Biote that the PF approach, given in this paper, is a general
completeness; we allow this to vary so that particles witffamework for different correspondence tasKasks only
larger numbers of correspondences dominate. In the currefififer in the definition of the matrik and the update rule for
implementationy is set to10, and5 correspondences are GC' used to generate the correspondenc@sction 7 pro-

destroyed. Figure 8 shows an example of a particle undetdes examples.

6 Extended PF Algorithm and Example

6.1 Algorithm
Fig. 8 Result ofrecedestep: Left: before recede. Middle: directly after
recede 8 randomly selected correspondences removed from partichNe will now define the general PF process to estimate the
Right: 8 iterations later. The particle is re-built in a more coresist Maxi Likelihood Particles - d heth
way, containing the same number as the grouping left. Thérsalt ax_'mu_m_ ! e! ood Particleg,, € G _enOt_eS_t et.
can be seen in Figure 7, center particle in iteratiort, G .; the set of all particles in iteration
t. The algorithm follows the classic steps of prediction and

_ _ evaluation and is extended by the additional recede step.
going a recede step. The improved performance due to the
recede step is demonstrated in Figure 17, Section 8.1. 1y - t=1,g , = 0 Vi = 1..m= number of particlesit’* = L. Init

Since we do want to destroy strong correspondences (tOor the recedé-step (see Section 5.3).
escape local optima) as well as weak ones (to refine a con- _ _ _ ‘
. . . 2)Prepare the constraint matria@€’(g4.,) for i = 1..m and compute
figuration), the selection of correspondencesto be destiroy W= Lo GOl :
is independent of the strength of particular corresponelenc " — © GCg1)
3)Select a correspondencec GC based on the distributio}.

4)PREDICTION : compute posterior distribution (weight of particle)
5.4 Role of Local and Gobal Constraint Matrices in the PF P(g! ,,|c"), (see Section 5.1.2).
Process ) Plai 1)
5)normalize weightsP(g: i)
) g (91:t+1) STy Polary)
This Section concludes the usagelofW* andGC(g1:1)  6)EVALUATION : compute new set of particles, 1 — RRS(G:)
during the PF process. using residual re-sampling (RRS) preserving most probtage par-

. o ticles with dominant weight.
— L contains correspondence probabilities based on local

features and defines the local constraints. Together with/RECEDE:if  mod (,r) = 0 deleted < r correspondences in each
GC(g1.) it is used to generate the distribution for cor- particle inG1.: (see Section 5.3).
respondence selectidi® (eq.9)in the PF update. Each 8) LOOP:if not all particles are complete:— ¢ + 1, return to step
particle uses the same mattlx henceL can be com- 2 elsereturn particlejy.; = argmazy,.,eq, (P(g1:¢)) with maximum
puted offline prior to the PF process. weight to represent a near optimal solution.

— W is the distribution for correspondence selection, a
joint probability of L andGC/(g;.+), see eq.9.
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6.2 Example A oz

We want to illustrate the PF algorithm using a simple exam- % i \ \

ple. We will use the case of correspondences between tw __ —

shapes, represented by closed boundaries under the glot % i %‘

constraint of strong contiguity conservation (for constru | | \

tion of global constraint matrix see also Section 7.3). The ] !

shapesS; = (v1,..,v10), S2 = (u1,..,u7) are uniformly = e

sub-sampled using0 and7 points respectively, see Figure i i i

9, left. The vertices in each shape are numbered from th

bottom-most point counter clockwise. The local correspon: % % @ =gy
] l |

1 010 0.260 0.240 0240 i >
: 8 % )
° - Fig. 10 PF process. The rows show theparticles in iterations to

7 after residual sub-sampling. The particles in each row ared by
weight (strongest first). Arrows show evolution of partgl@he evo-
lution of the winning particle can be followed by looking hetdouble

Fig. 9 Shapess; (black),S2 (red) and local correspondence matlix  f.2meaq sub-figures. See text for further details.

dence matrix. was built using the curvature feature descrip-
tor only. Figure 9, right, showg, clearly highlighting the
distinct feature pointsy, v4, v7 in S7 and their counterparts
u1,us3, us iN Sa: L suggests mainly the (ambiguous) corre-
spondences

(v1,u1), (v1,us), (v4,us), (vs,u1), (v7, us).

To keep the example simple, the PF process is performed
V.Vlt.hOUt recede step, usingparticles. Each particle is ini- Fig. 11 The winning particlej (left). Procrustes alignment using the
tialized to be 'empty’. The global constraint of strong con- ¢, respondences gf(right).
tiguity conservation has no influence up to and including
the choice of the third correspondence, since we also allow

reflection (flipping) of the shape. Hence the fisstorre- o< in Figure 10, e.g. corresponder(de3) is the corre-
spondences are drawn from the distribution solely defined,,ngence added by the update step to the framed sub Figure
by L. Figure 10 shows the PF process, iterati@n® 7. i, a1 to gain its successor, the framed sub Figure in2ow
Each row shows the survivingparticles after residual sub- - Athough the particle starts with a weak (yet correct) corre

sampling, the columns are sorted by particle weight fromy,;ngence, it survives and evolves into the winning particl
strong to weak. Each sub-Figure shows a particle CoNSiSfssiablishing stronger correspondences later.

ing of the grouping (=correspondences, blue lines), along
with its weight. The arrows between the sub-figures mark

the evolution of each particle in the next iteration. The-dou lteration; | COIT. (v, u;.) | WeightL(vs,, u,)

ble framed sub-figures mark the line of inheritance of the 1 (5,2) 0.045

winning particleg, which is shown at the bottom left in Fig- 2 (9,6) 0.056

ure 10 and in Figure 11, left. Observe that the correspon- j ggg 8'123

dences iy lead to alignment with a reflected version$. 5 8.7) 0.043
Table 1 shows the correspondences along with their weight 6 (7,0 0.152

in the order they were established, Figure 12 illustrates th 7 2.4 0.048

corresponding connectivity matrix gfin iterations3 to 5.  Table 1 Correspondences of the winning partiglduring the PF pro-
The first three rows of the table are the correspondences 6fss-

the double framed sub-Figure in Figure 10, top row. Each

succeeding row in the table defines an additional correspon-

dence of the double-framed sub-figures in the successive
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The 'Shape Context’ descriptor fulfills this requiremenowA
ever, the implicit definition of regions in the shape-comtex
descriptor makes the simple Hungarian approach unfeasible
for partial matching, as explained in Lakaemper et al (2008)

COBNDNBWNE
COPNDUIBWNE
CODNDUBWN
COBNDOBWNE
CORNDNBWNE

H
.
=
N
N

1234567 1234567 1234567 1234567 1234567

Fig. 12 Connectivity matrix showing correspondences of the wignin /-3 Strong Contiguity Preservation

particleg during the PF process.
g is said to becontiguity conservingif, for a clockwise or-

dering of (v;,, .., v, ) in S1, (u;,, .., u;, ) is ordered either
clockwise or anti-clockwise ity (allowing both clockwise
and anti-clockwise orderings i, makes it possible to find

This Section shows how to define the global constraint ma(_:orrespondences In the reflected versiofigf g is strongly

. . contiguity conserving, if it is contiguity conserving and
tricesGC to model different tasks. In gener@C depends guity g guity '9
. . L ) contains one to one correspondences only. The implemen-
on a single particlg;.; at a certain time. GC is therefore

. . . . . tation of such a constraint using matrices is straightfodyva
in general defined as a function @f.;. This function is the g ghtfody

'GC update rule’, modeling the feedback process, as menvye give an example below:

tioned in Figure 1. 10000 000
The global constraint matrix defines the specific task?'* ~ (g poto = GCO(g124) = 000

We will give examples and mention existing solutions to

these tasks to illustrate how the PF system unifies these proﬁn e_zxgmp_le illustrating stron_g co_ntlgmty conserving goeu
lems. ing is in Figure 7. Note that in this case the topology of the

matrix is important: if we deal with closed boundari€x;
must be interpreted periodic in rows and columns (torus).
7.1 No Global Constraints This problem is classically solved using Dynamic Pro-
gramming (DP), as in Scott and Nowak (2006). DP will find
The most simple casé. is independent of;.; and is de- the optimal solution to eq.8, while PF is near optimal only.
fined byc¢;; = 1. Since the problem is globally uncon- The experiment Section 8 will show that the loss of preci-
strained, the particlé consisting of all possible correspon- sion of PF is visually unimportant.
dences solves the optimization problem eq.8. The PF approach unifies the former problems in a sin-
gle framework, yet the specific solutions (Hungarian/DP)
are superior as they lead to the optimal solution. PF shows
7.2 One to One Correspondences its advantages in problems where more sophisticated global

) constraints are needed. One example is partial shape match-
To guarantee one to one correspondences (in contrast to o)

to many), the probability of selecting a correspondence con
taining a point that is already part of an existing correspon

dence in particlg;.; must be sett0. AmatrixGC(g1.:) = 7.4 Adding Domain Knowledge for Partial Shape Matching
[ci;] defined by:

7 Global Constraints to Solve Specific Correspondence
Tasks

In all previous examples the definitionG1 (¢;.;) was straight-
forward: the global constraint was a hard defined admissibil
ity, resulting in an a priori known rule to set the elements of
GC(1 : g) to either0 or 1. The following example differs
guarantees the one to one constraint. Example (pattigle in two aspects: first, the admissibility is defined in a soft
is represented by its connectivity matrix): way by probabilities in0, .., 1]. Second, the update rule is

L not known a priori, but is stated as a hypothesis based on
3) the groupingg:.; and weight matrixL. As the number of

! iterations increases, the hypothesis becomes strongisr. Th
The problem of one-to-one correspondences without orderan be interpreted dsarning the constraintluring the PF
preservation is classically solved using the Hungarian alprocess.

gorithm. An example for this problem is 'Shape Context The global constraint derived here extends the global
Matching’, as described in Belongie et al (2002). Since hereonstraint of strong contiguity conservation. The coristra
no topological constraints are implied, the local featuge d of strong contiguity conservation is sufficient to find good
scriptor must contain regional or neighborhood infornmatio groupings for closed shape boundaries. However, it fails in

|91:t‘
cij =0 < (v;Uu;)N U g | #0, else cij =1
i=1
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finding part correspondences, see example Figure 13, lefftandard deviation, of the blurring defines the distinctive-
Additional domain knowledge has to be implemented. ness of the region. To learn the window during the PF pro-

5 10 15 20 25 30 3 40 45 50

Fig. 13 Part correspondences using different constraints. Frétrtole

right: 1) strong contiguity only. 2) Procrustes alignmesed Section  Fig. 14 Windowing for partial shape matching. In reading order: 1)

8 based on (1). 3) windowed strong contiguity as introduce8dc-  correspondence matri¥’ of shape and part shown in Figure 13. 2)

tion 7.4. The window was learned during the PF process. 4r@stes  The final window, learned during the PF process. 3) Windovesdion

alignment of (3) of (1). 4) The final connectivity matrix (superimposed ova))( (4)
corresponds to the grouping shown in Figure 13, right. Altnoas are
shown in transposed form.

In the following we assume that shage entirely con-

tains partS,. This is not a strong assumption, sinceSif  cess, we analyze the connectivity matrix of a partigle at
only contains parts of>, we can exchange both shapes andime¢ for the presence of diagonals. That is to say, we deter-
use an appropriate subset 8f as the part. This assump- mine the most likely diagonal of its connectivity matrixkta
tion is above and beyond the constraints used to compafgg into account both the connectivity matrix @f ; as well
entire (not parts of) shapes. However, we do not handle thgs the underlying correspondence weights of the mdtrix
case of correspondences wheteand Sz have only par-  \We gauss-filter the estimated diagonal to obtain a window
tial overlap inboth shapes. For purposes of simplification, GC,,(g1). The diagonal is a hypothesis for our focus of
we assumesy, S> have the same scale and are sub-samplegitention, namely, the region The strength of the hypothe-
equally. Ignoring these constraints is done only at the cosdjs is modeled by the filter kernel size. A larges, defines

of a less intuitive constraint matrix, see Section 7.4.kSEh aweak hypothesis (or indistinct region)_ Decreasmgur_
assumptions jointly imply that the corresponding vertices ing the iterative process, increases the trust in the diaigon
S1 have to be "close together’, and not spread outall ver  hypotheses at later iterations, since it narrows the diagon
In other words, we focus exclusively on a certain connectedgnstraint windowGCy, (¢g1.). The final global constraint
region (or window) ofS;. matrix GC/(g1.;) is then given by:

Figure 13 shows the effect of this constraint. If it is not
applied (left), only the center vertices of paft are held GC(g1:t) = GCo,(91:4) © GC(g11). (15)
together by the contiguity constraint, hence they lead te co with GC(g;.;) modeling the strong contiguity preservation
rect correspondences. The outer verticeS:ohave the op- as defined in Section 7.3. To ensure that the final particle
portunity to correspond to wide regions of shape since gy, is entirely placed in the windowCy, (g1.¢), the parti-
contiguity is a local neighborhood constraint which is werak cle process is repeated: from the first PF process, we only
for the (intuitively) weaker neighborhood-bound outer-ver use the final constraint matri&C,, (¢1.;) of the winning
tices. Focusing on a connected regiorbinleads to the cor-  particle. We then run a second entire particle filtering pass
rect correspondences (right). usingGCy, (g1.1) in each iteration (i.e. we finally run a win-

If the region of focus is known a priori (i.e. the position dowed version of the optimization process). The second pass
of the part in the shape is roughly given but the exact singl@eeds only a few particles since the window limits the search
correspondences are not explicitly known), the optimaati space drastically (in our tests we decreased fs0particles
process is simply a windowed version of entire shape matchn the window-learning pass ®patrticles in the windowed
ing. Unfortunately the window is not known. The strength of pass, which suggests that in the second pass we are close to
our approach is that it can estimate the window during theitilizing a greedy process).

PF process by analysis of the particle givenin each itaratio o, is determined experimentally. It depends on the size
Below, we use the notation, 'diagonal matrices’ to refer ton (number of points) of the target shape and sizef the
matrices with elements on either the main or side-diagonalgjuery part: starting with a value of + o,,;,, we decrease
To highlight a certain region = (v, vy41, .., Up4%) IN S1, ot linearly too; 1 < o, — n/min each iteration to a mini-
correspondences withy € r have to be masked ih. Due  mum ofo,,,;,, = 3 (motivation: starting with a wide standard
to the equidistant sub sample and equal scale assumptiomgviation which nearly does not reflect any neighborhood re-
the mask is a diagonal matrix. The position of the diagoiation, o, decreases down 19,,;, = 3 in m steps;m is the

nal defines the allowed region. We use a soft mask, i.e. aumber of iterations to find the: correspondences not tak-
gaussian blurred diagonal, see Figure 14. The kernel size, tng into account 'recede’). Since this simple strategy ked t
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satisfying results, no further research (e.g. with noedin complete 100-point shape consists of 42 samples). Accord-
cooling strategies) was performed at this time. ingly, the correspondence matridés top row of Figure 16,
Note that especially the interplay betwe@6's;g,.q, (91:¢) are of size30 x 21, 50 x 21, 75 x 21, 100 x 21. Since they
and the recede-step already builds a near diagonal soluti@iways contain the same matching pattern of complete shape
in the first run, since the domain knowledge gained in it-vs. part (in different resolutions), the pattern becomestiv
erationt helps to rebuild destroyed connections appropri<ally stretched’ using higher sample rates, which creaies t
ately inside of the window. With this approach, parts couldslopes of different angles. The center row shows the final
be matched successfully. For results see Section 8. window of the winning particle, the bottom row the corre-
spondences.

7.4.1 Multi Scale Partial Matching

Inthe work presented in Lakaemper and Sobel (2008) we a;
sumed the same scale for both shapes. We now explain how w

the system can be extended to operate on multiple scales:|as 1
an example, let us assume an entire shgypaith boundary
length1.0, uniformly sampled byl00 points, and a pat$s
of length0.25, uniformly sampled by25 points. If we as-
sume identical scales, i.e. a scaling factor= scy/sc; of
1.0 (with sc;=1,2 = scale 0fS;=1 2), the connectivity matrix
of the optimal grouping would be diagonal, i.e. describe a
line of w/4 degrees in the matrix, a 'slope’ (see Figure 15),
Assuming a different scale changes the angle of the slop
the larger the scale &, the more horizontal the line be-
comes, since now th&5 points of S, cover a smaller part
of S1; e.g. with a scaling factor df.0 between the shapes
the 25 points of S, would correspond to a region iy cov-
ered by12 points only. Simple geometry defines the angle

« of the slope by = atan (ﬂ) To gain scale indepen-

scy
dence, we analyze the current particle not only with respec¢
to the probability of diagonals, but determine the probabil
ties of slopes in a certain range of angles. To cover a range °
of scale-ratio? € [0.5..2.0], we cover slope-angles in the
rangea € [0.46..1.11].
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Fig. 16 Multi scale partial matching. The part consists of 21 poofts
a 50-point sub sampled 'fountain’ shape. Columns left thtrighow
comparison to complete *fountain’ shape, sub sampled viitib8, 75,
100 points respectively, resulting in scaling of 3:5, 1:2,2:1 (num-
ber of points in corresponding part : 21 samples). Top rowrespon-
dence matrixiv’. The vertical 'stretching’ effect, leading to different

, o , ) diagonal slopes, can clearly be seen. Center row: Finalawn&ot-
Fig. 15 'Slopes’ as generalization of diagonals for scale indepahd  {om row: correspondences.

matching. left:3 slopes with different angles. Center: blurred slope for
scaling factorsc = 1.0, Right: same as (center) fet = 2.0

Figure 16 gives an illustrative example of the effect ofg Experiments and Results
multi scale matching. A part (constant size, 21 points), is
matched to versions of a complete shape, sub sampled wihi1 Performance of Particle Filtering
a different number of points. The corresponding parts in the
complete shapes therefore appear scaled relative to the 20 evaluate the performance of the PF process in the opti-
sample point query part (e.g., the corresponding part in theization process with respect to different numbers of par-
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ticles, with and without recede-step. Given a sh&pde- 8.2 Correspondence of Complete Boundaries

This Section will show the behavior of the PF system on
complete boundaries and will show examples of correspon-

L6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ dences under the influence of noise, occlusion and sparse

Laf ] presence of features. We used shapes of the MPEG-7 data

LZW set, all boundaries are uniformly sub-sampled using 50tpoin

A | and treated as closed boundaries. The global constraint is
Particle Weight with recede step 'strong contiguity preservation’, as explained in Secfio.

1 Rlocteiesltancelcorlviblecee) | For display reasons, the shapes are also shown after align-

)6 Particle Weight, no recede step 4

ment, using a simple, basic form of Procrustes Alignment

(PA) (Gower and Dijksterhuis (December 2005)). For dis-

play reasons (the optimal solution shows a connectivity ma-

e—— trix close to the diagonal) the shapes were index-aligned, i

12 ‘ ‘ ‘ ‘ ‘ ‘ ‘ the starting points in both shapes correspond visuallydh ea
¢ m e e other. This does not influence the experiments, since the PF

Fig. 17 Performance of PF system with different number (1-160) ofSystem chooses the initial correspondences independent of

particles (x-axis) with and without recede step. Black:wiecede. the pointindices.

Blue: no recede step. For black/blue graphs the y-axes sliogvs

weight of the best particlg. Red: Procrustes Distance of aligned Example 1Matching of identical shapes (Figure 18).
shapes.

fined by a2d polygonal boundary witls0 equidistant ver-
tices, we compute the correspondence matrigf S with
itself (i.e. S; = S2) under strong contiguity conservation.
This setting provides a ground truth optimum grouping
{{v1,v1}, -, {vs0,vs0} }. We perform different runs on the Fig. 18 Matching of a shape to itself. In reading order: a) correspon
optimization process usingto 160 particles, the result of 9€nces b) PA alignment, based on (a), c) connectivity méeix dots)

. . . . of correspondences superimposed over local constraimbaiat
each run is the weight of the best particle. To see the influ-
ence of the recede step, we repeat the experiment skipping

this step. To see the influence in the alignment resulting fro o S
finding a near optimal solution only, we compute the shap&Vé matched shape ‘carriage-01' to itself. The PF system

similarity based on the best particle correspondence usingglivered the perfect result, the connectivity matrix is di
Procrustes Analysis (PA), Gower and Dijksterhuis (Decemagonal, each point corresponds to its identical counterpar
ber 2005). PA aligns two shapss, S» based on one to one of the other shape. The reason is twofold: first, the matrix
correspondences. It finds the best scaling, reflection; rotd'@S @ strong diagonal, suggesting these connections as the
tion and translation of, to minimize the sum of squared MOSt probable ones to the PF system. Second, dominance of
distances between corresponding points. This sum, the PEOrréspondence-rich particles lead here to the solutidim wi
distance, is used in our experiment as the shape similarif?@ximal number of correspondences.

measure. EA is extremely sensitive to outliers aqd can onlgyample 20cclusion of Parts(Figure 19).

be used with a robust correspondence computation. The us- | this example we match similar shapes (‘camel-01 vs.

ability of PA as similarity measure shows the stability Of’cameI-OZ’), with a missing part in one shape (see Figure

the PF correspondences. Figure 17 illustrates the reswdt. T 19) (three legs vs. four legs). The PF systems does not find
PF system with recede step computes weights near the opyrrespondences to that part, which is correct. The missing
timum (1.45) robustly already with> 60 particles. Interest- part can be detected by a 'jump’ in the upper-left part of the

ing is the fact that the Procrustes distance drofis(ferfect connectivity matrix Figure 19,(c), following the higherreo

alignment) much faster, proving that the additional preciyespondence probabilities, which are off the main diagonal
sion gained is visually unimportant, hence the precise opti

mum, as found by DP approaches, would not enhance the

alignment here. The graph also shows the importance of thexample 3High Local Ambiguity (Figure 20).

recede step: skipping it, the performance of the system is The two shapes ('apple-01’vs. 'apple-06’) in this exam-
significantly less than optimal. ple lack distinct features, i.e. most of the points are deedr
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8.3 Complete Matching of Articulated Shapes

This experiment demonstrates the applicability of our ap-
proach on the data set of articulated shapes from Ling and
Jacobs (2007). The boundary was sub sampled B$ipgints.
As local feature descriptor, we used curvature oflypar-
ticles were utilized. See Figure 22 for results.

Fig. 19 Matching under occlusion. In reading order: a) shapes anrd co
respondences. The green shape has one more leg. b) PA aligome
connectivity matrix and local constraint matix

by similar values of. DS andC'V. The local constraint ma-

trix L therefore shows a huge area of similar correspondence
probabilities for the majority of points, see Figure 20(c).
This leads to high ambiguity, which can only be solved using
the global constraints. The preference of correspondenc

rich particles in cooperation with strong contiguity are th
driving force to establish correct correspondences for am-
biguous cases.

o]

.
‘ﬁ}? 17220t 7

Fig. 20 High local ambiguity. In reading order: shapes (a) with few
distinct features. b) PA alignment c) connectivity matnixidocal con-
straint matrixL: the lack of features leads to a huge number of similar
probability values (ambiguity)

Example 4Noise (Figure 21).

Matching of a shape to a noisy version ('device0-01’ vs.
'device0-13"). The challenge here is similar to the former
experiment, yet based in the opposite reason: featcine
ness mostly inferred by distinct values in DS, leads to
ambiguity: theb highly probable matches in each row (col-

umn) show the similarity to convex/concave extrema in the
other shape. The PF system reacts robustly to this challeng
Observe that it is somewhat arbitrary which of the strong di-
agonals is chosen by the PF system, since the shape is highly

symmetric and the matrix is interpreted periodically. m

Fig. 22 Matching of Articulated Shapes. The image in the leftmost
column is the reference shape for each row. It appears asdrghape
in the correspondences.

Fig. 21 Matching under noise. In reading order: a) shapes and cor-
respondences, b) PA alignment, c) connectivity matrix amwall con-
straint matrixL: here featurgichnessleads to high ambiguity.
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8.4 Partial Correspondences 8.5 Database Retrieval using Parts

In this experiment we provide visual proof of the perfor- W& compare our PF correspondence to part matching tech-

mance of partial matching. The data are shapes from thaiques based on time series algorithms described in Latecki
standard MPEG-7 similarity data set, see Latecki et al (po07et @l (2007). As in Latecki et al (2007), we took parts of

The data set provide®) classes oR0 similar shapes each. shapes of different classes from the MPEG-7 data set, the
We use the data set in the form of boundary polygons; each@'ts being identical to the ones described in Latecki et al

such polygon contairfs) vertices. We randomly selectshape(2007)- We then matched each part to the entire database
S, from the data and, as a randorpart (size:15 vertices) (all 1400 shapes), based on the PF correspondence (PFPA)
from a different shape in the same class. The PF proce§§d Procrustes Alignment. To achieve a fair comparison,

(50 particles, constraint: windowed strong contiguity as pre\We used curvature as shape descriptor, as in Latecki et al
sented in Section 7.4) leads to correspondences which af@007)- Figure 24 shows the parts (left column) and the top

used for Procrustes alignment. Figure 23 shows some typf- Matches for each part. In nearly all cases) the query

cal examples of partial matchings. resulted in shapes of the same class as the query part.
PFPA | OSB | DTWCW | LCSS
Top 1 100 | 100 90 90
Top 5 96 92 72 42
Top 10 91 84 67 34
Top20 | 74 67 59 26
Table 2 Retrieval Results of Partial Query, PFPA is the described ap

proach.

Table 2 shows the intra class hit percentage for the top
1, 5,10, 20 results, i.e. how many of the top-n results are
from the same class as the query part. PFPA is the described
algorithm, OSB the algorithm described in Latecki et al (200
DTWCW is a windowed version of Dynamic Time Warping,
LCSS stands for Longest Common Sub Sequence. The per-
centages of OSB, DTWCW and LCSS are taken from Late-
cki et al (2007), details about these algorithms are desdrib
there, too. Due to our robust partial PF correspondenca, eve
a simple similarity measure like PA outperforms the compet-
ing approaches.

8.6 Shape Classification Using Random Parts

Goal of this experiment is to classify (label) a query shape
by partial similarity to shapes of a pre-labeled data base, u
ing multiple random parts of the query shape. In short: to
which class does the query shape belong? The target data
base consists of different classes with multiple represent
tives. We use the entire MPEG-7 database, consisting of 70
classes, 20 members each.

The basic idea is to randomly select parts from the query
shape, and to compare them to different randomly selected

AR members of each of th#) MPEG-classes. The underlying

Fig. 23 Each row shows an example of partial matching, using differ-assumption for this experiment is, that randomly selected
ent shapes from the MPEG-7 dataset. The parts are randomégeh 1, il in average emphasize common features of the query
from different shapes of the same class as the full shapein@olL: . ..
correspondence. Column 2: Procrustes alignment. Coludnc8h- shape with a class of similar shapes. In contrast, shapes of
nectivity matrix and final, learned global constraint matshowing ~ hon-matching classes will offer less fitting features. Ttie a
the window the correspondences were chosen from. vantage of partial matching over entire shape matching is,
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factor of procrustes fitting. Procrustes analysis autorahyi
scales the part for an optimal fit. With non descriptive parts
this can lead to a good geometric fit even with non matching
parts. For example, with a simple straight line (query) and a
target spiral (of same boundary length) the fit can be dras-
tically improved when scaling the query part’s size down to
the spiral’'s outer radius; this improved fit is not intuitamed
misleading. Denoting the value of procrustes least squares
fit by P, and the procrustes scaling factorQye measure

the fitness between a query p&tand a target shagg by
dp(Q,T) = Pmax(s,1/s) (dp(Q,T) = 0 = best pos-
sible fit). Hence, we introduce a penalty for the procrustes
scaling. Please note that this factor introduces the assump
tion that the part and object data is of similar scale. In this
experiment we need this assumption, since we do not rely
on significant parts, but use random parts. Scale indepen-
dent shape of such parts would be too general and would
introduce many false positive matching results.

We sub-sample every shape of the MPEG-7 data base
using50 uniformly spaced boundary points. The query part
size is fixed tal 5 points. We use the first shape in each class
as query shape, i.e. the experiment classifieshapes. Each
of these70 shapes is compared against randomly chosen
shapes of thentire MPEG-7 data base. A simple greedy
algorithm to weed out non-promising candidate classes is
used to shorten the computation time: starting with itie
iteration, we do not match the query part against members
of classes with an average fitness higher thaimes the
currently best fitting class (see 'if’ statement in the fallo

Fig. 24 Results of database query with parts. Left column is theyquer ing algorithm). For each query shape we iterate through

part, which is compared against the entire MPEG-7 data 1s10(

shapes). Each row shows the respectivestbjis.

that non rigid transformations are less influential as losg a
distinct shape features are still represented. Since ttte pa

the following classification process, using a maximum of

partMazx = 20 parts:

input = shapes
count = 1; partMax = 20; numberO fClasses = 70
average class fitnesg f(1 : numberO fClasses) = 0
while count < partMax do

select random query pagl from input shapes

are randomly chosen, a higher number of part tests mustbe  for c=1:numberOfClasseto
performed to ensure that characteristic shape features are if (count < 5) | ((count > 5) & (acf(c) < 4min(acf)))
captured. The best average fitness determines the classifi- then

cation.

Similar to the previous experiments, we determine the
similarity using simple procrustes fitting based on the par-
tial correspondences returned from the PF system. A cor-
rect partial correspondence is crucial for the successatf su

randomly select target shafiefrom 20 members of class
(&
compute correspondencgT
compute procrustes fitheds (Q, T')
updateacf(c) usingdp
end if
end for

a system. However, since the parts are randomly selected count «— count +1

they are frequently not significantly descriptive. To adljus
for that, we refine the similarity measure in the following

end while
class of shapé is argmin(acf(1 : 70))

two ways: first, we do not use the two outmost (the twoFigure 25 shows a typical example. It shows the first 4 itera-
ends) part correspondences for procrustes matching. in cdions of the algorithm using the query shape 'comma’. In the
tain cases, the PF system allows these correspondences tdifist iteration, the single part was not distinct enough gl
outside the 'optimal window’. Since procrustes matching isthe ‘comma’ class in the top results. Iterationg — 4 all
very sensitive to outliers, discarding the endpoints le¢ads show good matches to (different) members of the ‘comma’-
a more robust fit. Second, we take into account the scalinglass, the average class fitness improves relative to the ave
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age fitness of other classes: although single ‘comma’-parts
might fit better to non-'comma’ shapes, in average the matche
to the appropriate class prevails to eventually place theoa’-

class at ranl (staying at rank one for the remaining itera-
tions). af
parts:U H H U |
,,

10 20 30 40 50 60 70 80

G
j

iter. 1 \/
TS

iter. 2 () "'\R- \~-—
'/_\) >

Fig. 26 Ranking (y-axis) of correct classification for th@ query
shapes (index of class: x-axis). Except for the 'devicessts (red,

[ classes 23-32), the classification based on part-corrdspee yields
J me// impressive results. Please compare table 3. See text fousdi®n
about the 'device’-classes.

San) JOSan
N
\
}

.

(‘ T \I ﬁ,> 7
iter. 3 ; - 1 L -'-M/ 8.6.1 Excluding the 'Device’ Classes: Explanation
___.-M/‘ 4/ ?} ( :} \ / ;> If we look at the boundary representation, thie'device’
iter. 4L Lot I | g classes in the MPEG-data set are very critical: for certain

classes, the intra-class shape variance (intuitive) ighigh,
Fig. 25 Four iterations of classification of shape 'comma’, Top row: gych that especially for boundaparts matching to non-

the shape and four randomly selected parts. Rows labeldd Wp o ice classes is more likely. Additionally, these shapes a
five results of classification comparing the respective fgarandomly

selected representatives of all MPEG classes. Using only the first Nighly symmetric and do not add any further information,
part, the comma does not appear in theiafasses. Afte iterations, ~ such that the randomly selected parts from the query shape

the consistent good match with (different) members of clessma’  gre all very similar (device0/1/2 are stars with differemtm

averages out the matches in other classes. Class 'commg’'@staank bers of rays. Parts of such shapes are not distinguishable

one for the following iterations (not shown). ) . . L '
these shapes only diffgtobally). Having a number of simi-

lar parts for the query, the algorithm design resembles com-

Harison with a single part. Together with high intra shape

Figure 26 shows the result of the experiment. For each thi lai h tain device cl
of the 70 query shapes, the rank of its correct classifica/2"'ance, tis expiains why certain device classes aregiyon

tion is shown. In general, the classification works well, eX_classn‘led. This explains the insufficient performance ef th

cept for certain problem cases which we will discuss below?lassmcat'on of classefb, 26 (device2, device3).

The problem cases are the shapes of the 'device’ classes In certain cases, the boundary in.fornjat.ion_ of such de-
in the MPEG-set (classes 23-3Bxcluding all 10 device Vi€ c_Iasses can not lead tq any_part|al similarity at akk, se
classestable 3 shows the resulil.67 shapes are correctly ©-9- Figure 27. The shapes in a single class have no common
classified, no correct classification ranks worse than rank Partial boundary features; the boundary of members of the
(with only a single class ranket] and4 classes rankeg). ~ Same class is extremely distorted: a partial boundary based

Note that this experiment is different to the popular MPEG-@pproach must fail in these cases. This explains the inciorre
7 bull's eyetest. classification of classexv, 28, 29, 32 (device4, device6, de-

vice9). The remaining device classes have perfect classific
tion results (classe3s, 24, 30, 31), however, the aforemen-
tioned arguments partially hold for these classes, too. We

Correct C'aSlSiﬁcatiO” rank_number g‘;e’y shapes pgelrcgyt therefore decided to eliminate all device classes fromehe r
5 4 6.67 sult statistics of table 3.
3 1 1.67
total: 60 100
Table 3 Table of correct classification ranking of MPEG-7 egtlud- . .
ing the 'device’ classes 8.7 Experiments on Scalability

The time complexity of the algorithm is determined by the
number of iterations and the complexity of the prediction
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)& see Figure 30. We leave the strategy to determine the number

of particles to later research.
N

=

Fig. 27 Certain classes in the MPEG-7 set contain extreme bound-
ary distortions. These classes only have a comgiobal appearance,
while, looking at boundary parts, the intra class simijaistvery low.
Such classes are hard to use for boundary part based ciisificThis  Fig 28 Correspondence matrix of forks (see Figure 29) Left: both
holds especially for most of the 'device’ classes, with tkaneples of - forks containing20 points. Right: both forks containingoo points.
'device6’ (top row) and 'device9’ (bottom row) shown heMe ex-  gee text for further explanations.

cluded the results on all device classes (shown in red inrei@6) in

table 3

step for each particle The latter one depends on the com-
plexity to build the constraint matrix. In the case of pdrtia
matching the constraint matrix can be determine@in?).
The number of iterations is, since we aim for complete-

ness. Hence, in this case, the time complexit {gn?). )
. p- ©isn ), Fig. 29 Correspondences between shapes 'fork19’ and 'fork20’ ef th
In our current MATLAB implementation, matching of \peG.7 data set, uniformly sub sampled with (from left tchtig0,

two full boundary shapes with0 points each takes about 50, 100, 500 points. The correspondences were computegl aision-
2 seconds on a typical PC desktop (runtime for the follow-Stant number of 50 particles.

ing examples: computation of 500 points, 50 particles: 15
seconds; 800 points 200 particles: 90 seconds).

Apart from runtime complexity, we examined the per-
formance of the algorithm using different sampling rates.
In digital objects, 'local’ descriptors like curvature aae-
tually 'regional’ descriptors. The underlying neighbooklo
size is determined by the sample rate (if sub sampled uni-
formly). A higher sample rate therefore decreases the re-

gional information in each sample point. This generates |O|'=ig. 30 Correspondences usirig and200 particles using a sample

cal correspondence matrices containing a high number gfte ofs00 points. While the low number of 50 particles was insuffi-
points with similar correspondence probability, see Fegur cient (left), an increased number of particles (right) ledorrect cor-

28. The peaks in the higher resolution version are more digéspondences.
tinct. However, the number of ambiguous points (dark blue)

increases in each row about linearly (a row gives, up to & please note that this example demonstrated the influence
constant factor of proportionality, the correspondene®dpr  of lowering the significance of local features. In this case,
ability of a single point in shape 1 to all points in shapethe global constraint of order conservation becomes iserea
2). This reflects the significant growth of the set of possiblangly important. However, this simple global constraint is
matching candidates in each augmenting particle update egyo weak to be carried by a low number of particles. The
pecially in later iterations, when the peak-correspondenc \yeakness of the global constraint had to be counter balanced
are already established. Assuming a constant number of pajsing a higher number of particles. The next example will
ticles, the system becomes more likely to be caught in a l0show how the same PF framework, applied to partial match-
cal Optimum, the more pOintS the data set contains. Wh"ﬂ]g of 2D point CIOUdS, requires Significant'y less parﬁn'[e

the results in a certain range (20-500) of data points with ge global constraint is defined in a different way.
relatively low number of particles (50) are satisfying itsth

experiment (see Figure 29, a labeling task usig points ) ) _
could be handled increasing the number of particlezoty ~ 8-8 Partial Matching of Point Clouds

1 the constant factor depends on the numibef particles and num-  IN this example, we leave the area of boundary comparison
ber of correspondences destroyed in the recede step and head towards a more versatile data representatior, poin



21

clouds. The versatility allows to represent shapes witkeinn turing global shape information. The quality of this degeri
structures, or, more general, of arbitrary topology, sgeifé  tor is demonstrated by impressive results using simplematc
32. The drawback of this representation is that no canonicahg based on the hungarian algorithm. However, for partial
point order information is given. Hence, the previously de-matching this approach is not applicable: to capture region
rived global constraint of order conservation can not be apshape properties only, the radius for the shape context com-
plied here. We define the global constraints on point cloudputation has to be decreased, leading to failure in the hunga
by means of neighborhood consistency. Please observe, thah matching, see Figure 33, left column (max. radius: 0.2).
the PF approach for this significantly different task onlfiy di Our experiment uses a fixed radius shape context (max. ra-
fers in the definition of the GC-update rule (and, naturallydius: 0.2, compared to a shape diameter of about 1.0), but re-
the pre-processing of local features). We intend to ilatstr  places the hungarian matching with our PF approach. There-
the scalability and extandability of our PF approach withfore, in contrast to the hungarian algorithm, which does not
this example, which was previously presented in Lakaempaespect any global consistency constraints, our re-defined
et al (2008). The underlying definitions of local and globalGC-update rule adds global consistency to the local/region
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constraints can be found in more detail in Lakaemper et ashape context feature. The improved results can be seen in
(2008). Figure 33.
Consistent neighborhoods are defined in terms of dis- In contrast to the previous (fork) experiment, where the
tance consistency of shape points, to points participatinghcal descriptor became weak due to a high sampling rate, in
in already established connections. Figure 31 illustriites  this case the local descriptor is strong enough to suppert th
motivation:v; andu; are points of two shape, Sz inR%. interplay with the global descriptor sufficiently. The expe
d1 2,3 denote the (Euclidean) distances betweeandvs 34+ ments were conducted with a very low number of particles:
as well as the respective distances betweeanduz 3. We  only 10 particles were required. The data sets congain
assume an established correspondéngceu, ), and callv; points each.
andu; the 'seed points’ for the update. The update values
GC(v;, u;) are computed using the difference between their
distances to the seed points. Only those point pairs.)
should be assigned a low value (closeltd), where a) at % a %}\\ )\
least one point of v;, u;} is close to its seed, and b) the
distances ofy; andu; to their respective seeds is differ- " A
ent. All other pairs should be assigned a value closer to 7?\' ‘/\
1.0. The table fig.31, right shows example update values T i}
GC.(UZ" u;) In accord with the motivation&iC'(v,, u2> ~ Fig. 32 Top row: chinese words. bottom row: Our data consists of 200
1 sincedl = d(vz,v1) = d(uz,u1) and both distances anqom samples from a skeletonized version of the top rowwilfe
d(.,.) are relatively smallGC(v4,u3) = 1 for a differ-  find the partial match between (top row in reading order) a;e, .
ent reason: both distances are largeds), hence no state-
ment can be inferred7C(vs, u2) < GC(vs,u3) although
|d2 — d1| = |d2 — d3| Sincemz’n(dl,dg) < min(dg,d3): a
corre_zspondence weight between.two poir_1ts which are botQ Conclusion and Outlook
relatively far away from the established points should ks le
(value closer tol.0) influenced. The).0 values for(vy, -) We presented a Particle Filter framework to solve the corre-
and(-,u;) guarantee one to one correspondences. For fur- d blem. The performance was demonstrated on
ther details on the exact definition of the GC update ruIeSp()r.1 ence pro ; P . .
please see Lakaemper et al (2008). partial shape matching da.‘d polygonal boundaries, Whlch
was solved through a windowing approach. The window
was learned during the iterative Particle Filter process: F
e EEEE ther examples demonstrated the extendability to a more ver-
R 2 P L satile data representation, point clouds. Though the exam-
Q"\‘@ : ples of this paper were restricted 2ddata, the PF frame-
work can handle arbitrary dimensionality. Future work will
Fig. 31 Updating weights based on a single established corresportherefore focus oD shapes3D shapes pose a special
dence and different distances, see text for explanation. problem, since the number of data points is in general much
We used a radius-limited version of shape context Behigher. In order to tackle this problem, an appropriate GC-
longie et al (2002) as local descriptor. In Belongie etaD@2Y) update rule will be specified. Additionally, the recede step
shape contextis used for shape matching of complete shapegich currently chooses deletion candidates from a uniform
For this purpose, the radius is automatically determinaios ¢ distribution, will be extended.
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