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Abstract 

 
We propose a new pixel-level shape descriptor. 

First, shape contexts are computed. Then, 2D FFT is 
performed on each 2D histogram from shape contexts. 
Such a scheme solves the rotation-invariance problem 
of shape contexts based on the shift theorem of Fourier 
Transformation while does not increase the 
computational complexity. Theoretical proof and 
experimental validation are provided. 
 
1. Introduction 
 

Shape matching plays an important role in a variety 
of applications in computer vision and pattern 
recognition. The key problem for shape analysis is how 
to capture and describe the characteristics of a shape. 
Shape context is a recently proposed descriptor [1], 
which has received much attention to date. An ideal 
shape descriptor should possess the following 
properties: (1) good discriminative power, (2) rotation 
and scale-invariant, (3) robust against deformations 
and occlusions. The advantages of shape contexts are 
as follows. (1) The computation of shape contexts is 
performed directly on pixels, avoiding the 
preprocessing to detect structures in pixels, which is 
usually regarded an error-prone process. This promises 
the robustness of shape contexts. The discriminative 
power of shape contexts are very good because it 
figures out how the other point configure in reference 
to every point. The weakness of shape contexts lies in 
the rotation invariance. The rotation invariance of 
shape contexts is dependent on the tangent at every 
boundary point. To compute the tangent at every pixel, 
the boundary points must be computed and organized 
in order. This is against the fundamental spirit of shape 
contexts. One main advantage of shape contexts is that 
it can be directly applied to pixels without any error-
prone preprocessing such as the perceptual 
organization of the boundary points into a point 

sequence. The tangent based rotation invariance is 
unstable in that perturbations may arise from both the 
outside outliers and the error-prone perceptual 
organization of the boundary points. Moreover, the 
perceptual organization of boundary points prevents 
the shape contexts from being applied to more general 
cases other than boundary based shape representations. 
It is known that shape can be represented in many 
ways, not just the boundary of objects. For example, 
skeleton points are the more generally applied 
primitives in binary image classification [2]. Besides, 
point set matching, which is a classical problem in 
computer vision and pattern recognition, tackles more 
general cases, not just boundary points. In view of such 
limit of shape contexts, we propose a new descriptor in 
[2], namely, statistical integration of pixel-level 
constraint histograms. It preserves the main advantages 
of shape contexts, discriminative power and 
robustness, while solves the rotation-invariance 
problem. However, this descriptor is limited in that its 
computational complexity is high, roughly O(N3). To 
improve the rotation-invariance of shape contexts 
while not introduce higher computational complexity, 
we propose in study a new scheme for pixel-level 
shape description. We refer to this new descriptor as 
Rotation-invariant Shape Contexts based on FFT (FFT-
RISC). The key is to perform 2-dimensional FFT on 
the original Shape Contexts. Then, let the modulus of 
the FFT transformation of Shape Contexts be the 
signature to characterize how the other points 
distribute around every point. Based on the shift 
theorem of Fourier Transformation, in this paper, we 
have theoretically proved that the proposed FFT-RISC 
feature is invariant under any affine transformation. 
Some examples are also provided to experimentally 
validate the invariance of the FFT-RISC feature. A 
related work can be found in [3]. The difference 
between this study and [3] lies in two aspects: (1) The 
descriptor proposed in [3] relies on the computation of 
a center for a point set, which degrades its 
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discriminative power. (2) This study proposes to use 
FFT to solve the shift problem encountered in [3]. 
 
2. Rotation-invariant shape contexts 
implemented by FFT 
 

In the following, we first present how to compute 
the rotation-invariant shape contexts via FFT (FFT-
RISC). Then, we describe the method to match two 
point sets using the FFT-RISC feature. Finally, we 
prove the invariance of the FFT-RISC feature under 
affine transformations. 
 
2.1. Computation of the FFT-RISC feature 
 

Definition 1: int(r) functions to preserve only the 
integer portion of a real number r. 

Definition 2: |c| means the modulus of a complex 
value c. 

Notes: The comments are enclosed between “/*” and 
“*/”. 
 
Subroutine 1: Compute the feature matrix 
for every point in a given point set 
P={Pi|i=1,2,…,L}. 

 

Input: P={Pi=(xi,yi)|i=1,2,…,L}.  
/*A point set of interest.*/ 

 

Output: {F(Pi)|i=1,2,…,L}.  
/*The feature matrix in association with 

every point Pi, i=1,2,…,L.*/ 

 

Step 1: For i,j=1,2,…L and j≠i, compute  
22 )()( ijijij yyxxl −+−= . (1) 

Step 2: Compute  
};,...,2,1,|)min{log(0 jiLjilr ij ≠== . (2) 

Step 3: For i,j=1,2,…L and j≠i, compute  
0log rlr ijij −= . (3) 

Step 4: For i,j=1,2,…L and j≠i, compute  

ij

ij
ij yy

yy
+
−

= arctanα . (4) 

Step 5: Call subroutine 2 to compute the 
feature matrix F(Pi) of every point Pi, 
i=1,2,…L. 

 

Step 6: Return {F(Pi)|i=1,2,…,L}.  
 
Note that: In subroutine 2, M will affect the 

resolution of FFT. 
 
Subroutine 2: Compute the feature matrix for a 
given point Pi in a point set P={Pi|i=1,2,…,L}. 
Input: {(rij,αij)|j=1,2,…,L; j≠i}. 

Parameters: M, ∆r and ∆α.  
/*M must be greater than int(rmi/∆r)+1, where 

rmi=max{rij| j=1,2,…,L; j≠i}.*/ 
Output: F(Pi).  

/*The feature matrix of Pi.*/ 
Step 1: Let hpq=0 for p=1,2,…,M; q=1,2,…,N.  

/*Construct a 2D histogram [hpq].*/ 
Step 2: For j=1,2,…,L and j≠i, compute p=int(rij/∆r) 
and q=int(αij/∆α), and then let hpq←hpq+1. 

/*∆r and ∆α are two parameters determining the 
size of every block of the 2D histogram. 
Correspondingly, pj and qj are the indices to the 
2D histogram.*/ 

Step 3: For p=1,2,…,M and q=1,2,…,N, let 
hpq←hpq/(L-1). 

/*Normalize the 2D histogram.*/ 
Step 4: Perform 2D FFT on the 2D histogram [hpq], 
which results in a new matrix [fpq] with the same 
dimension M×N. Note that fpq is a complex number, 
p=1,2,…,M; q=1,2,…,N. 
Step 5: Let F(Pi)=[apq], where apq is the modulus of 
fpq, p=1,2,…,M; q=1,2,…,N. 
Step 6: Return F(Pi). 

 
For a given point Pi, the step 1 to step 3 in 

subroutine 2 results in a 2D histogram as follows. 

∑
≠
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p=1,2,…,M and q=1,2,…,N, where 
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Following subroutine 1 and 2, a shape descriptor 
F(Pi) can be obtained with regard to each point in a 
point set. Since the computation of FFT is very fast, it 
can be regarded that the above shape descriptor 
implemented by FFT does not lead to obviously higher 
computing cost in contrast to the original Shape 
Contexts. Because F(Pi) figures our how the other 
points in the same point set distribute around Pi, the 
point correspondences between two point sets can then 
be computed based on such a pixel-level shape 
descriptor. 
 
2.2. Matching of point sets 
 
Subroutine 3: Compute the point 
correspondence between two given point 
sets P={Pi|i=1,2,…,L} and 
Q={Qi|i=1,2,…,L′}, where we assume L′≥L 
without losing the generality. 
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Input: {F(Pi)|i=1,2,…,L} and {F(Qj)|j=1,2,…, 
L′}, where ][)( i

pqi aPF =  and ][)( j
pqj bQF = , 

p=1,2,…,M; q=1,2,…,N. 
/*Input the feature matrices of the two 

given point sets.*/ 

 

Output: ψ. 
/*A set consists of the indices of 

matched pairs 

 

Step 1: Initialize ψ as an empty set.  
Step 2: Compute  

D={ ∑∑
= =

−=
M

p

N

q

j
pq

i
pqij bad

1 1

2)(  | i=1,2,…,L; 

j=1,2,…, L′}. 
/*The distance between the two feature 

matrices F(Pi) and F(Qj). 

(7) 

Step 3: Search }{minarg),(
, ijji

dts = ; Add a new 

element (s,t) to ψ; Update D by removing the 
elements {dik|k=1,2,…,L} and {dkj|k=1,2,…, 
L′}.  

 

Step 4: If |ψ|<L, go to step 2. Else, return ψ.  
 
In subroutine 3, the distance between two points is 

defined as the Euclidean distance between the 
corresponding two feature matrices. In each iteration in 
subroutine 3, the two points with the closest distance 
are selected to match. Of course, there must exist |L-L′| 
unmatched points in Q. 
 
2.3. Proof of invariance 
 

In the following, we will show that F(Pi) is a 
rotation-invariant pixel-level shape descriptor. If we 
apply an affine transformation to every pixel Pi=(xi,yi) 
in point set P, then, we can obtain a new point set 
Q={Qi=(Xi,Yi)|i=1,2,…,L}, where (Xi,Yi) is transformed 
from (xi,yi) via 
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In the above transformation, (x0,y0), s, and β are the 
parameters to determine the translation, scale, and 
rotation, respectively. According the above equation, it 
is easy to see that 

ijjiji
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It follows that 
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Due to Eq. (9) and Eq. (10), 
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Eq. (11) shows that scaling does not affect the 
computation of the feature matrix. 

According to Eq. (4), 
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πθαβ 2±−=⇒ ijij  (12) 
It is know that αij∈[0,2π], βij∈[0,2π], and θ∈(0,2π). 
So, αij-θ∈(-2π,2π). Eq. (12) shows that the difference 
between βij and αij is a constant if αij-θ≥0. If αij-θ<0, 
then, βij=αij-θ+2π. Because of Eq. (11) and Eq. (12), 
we know that 

(Rij,βij)=(rij,αij-θ+C), (13) 
where C=2π or C=0 for j=1,2,…,L and j≠i. Due to Eq. 
(11)~(13), we have 

(Rij /∆r,βij /∆α)=(rij /∆r,(αij-θ+C)/∆α), (14) 
Denote the Fourier transformation (FT) of (rij 

/∆r,αij/∆α) as 
f(rij /∆r,αij/∆α)⇔F(u,v). (15) 

In accordance with the shift theorem of Fourier 
transformation, we hold 

f(Rij /∆r,βij /∆α)= f(rij /∆r,(αij-θ+C)/∆α)  
⇔ exp{-[2jπ(θ-C)/∆α]v}F(u,v). 

(16) 

This leads to 
| f(Rij,βij)|=|F(u,v)|=| f(rij,αij)| (17) 

where |*| means the modulus of a complex value. On 
account of subroutine 2 and Eq. (17), we can conclude 
that the proposed feature is invariant under affine 
transformation. Because we apply (int(rij /∆r) and 
int(αij/∆α)) in constructing the 2D histogram and we 
use 2D FFT instead of 2D FT in computing the feature 
matrix, the affine invariance property of the proposed 
feature only holds approximately. 
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3. Experiments 
 

We demonstrate the invariance of the FFT-RISC 
shape descriptor via the following experiments. We 
conducted 3 tests in total. The image to be tested is 
shown in Fig. 1, which is a Chinese character 
consisting of a point set. In the first test, we generate a 
new point set by applying an affine transformation to 
the point set shown in Fig. 1. The new point set and the 
original point set are illustrated in Fig. 2. In the second 
test, we firstly add 50 noisy points to the point set 
shown in Fig. 1. The point set containing noisy points 
is shown in Fig. 3. Then, we apply the same affine 
transformation to the point set shown in Fig. 3. Fig. 4 
illustrates both the point set shown in Fig. 3 and the 
new point set transformed from this point set. Fig. 5 
and Fig. 6 are similar to Fig. 3 and Fig. 4 while the 
number of noisy points is increased to be 100. In each 
of the above 3 tests, we compute the FFT-RISC feature 
with two groups of parameters. The parameters of the 
first group are: M=64, ∆r=0.1, and ∆α.=10°. The 
parameters of the second group are: M=128, ∆r=0.1, 
and ∆α.=10°. We only alert M in the two groups since 
we want to observe how the FFT computation affects 
the feature. After we obtained the feature matrix for 
each point following the procedure described in 
subroutine 2 and 3, we matched the two point sets in 
each test via the method described in subroutine 3. The 
experimental results are shown in Table 1, which 
shows the ratio of the number of incorrectly matched 
pairs to the total pairs in every test. It can be seen that 
invariance can be guaranteed by the proposed shape 
descriptor if there are no noisy points. When the 
number of noisy points increase, the matching becomes 
worse. Also, bigger M results in better matching of 
points because the resolution of FFT increases with M. 
These tests confirm the invariance of the FFT-RISC 
descriptor initially. Yet, there are a lot of works to be 
done to refine the proposed scheme. Nevertheless, it is 
an interesting step in improving the invariance of 
Shape Contexts. The advantage of the propose scheme 
is: It promises rotation-invariance with little additional 
computational cost because the computation of FFT is 
very fast. In the experiments, the computation of the 
FFT-RISC feature is very fast. So, the proposed 
scheme merits further investigations for refinement. 
 

 
Fig. 1: Point set A 
 

 
Fig. 2: Point set A and its affine 
transformation 
 

 
Fig. 3: Point set B (Point set A plus 50 
additional noisy points) 
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Fig. 4: Point set B and its affine 
transformation 
 

 
Fig. 5: Point set C (Point set A plus 100 
additional noisy points) 
 

 
Fig. 6: Point set C and its affine 

transformation 
 

Table 1. Ratio of erroneous matching 
Noisy points 0 50 100 
M=64 0 7/105 31/105 
M=128 0 1/105 15/105 

 
4. Summary 
 

This paper proposes a FFT based scheme to 
improve the rotation-invariance of shape contexts. The 
main contribution is: The rotation invariance is 
achieved at very little cost because of the fast 
computation of FFT. The theoretical proof of the 
invariance of the proposed descriptor is provided. The 
experiments initially evaluated the proposed FFT-
RISC shape descriptor. Yet, there are a lot of works to 
be done to refine the proposed scheme, which will be 
our future endeavor. 
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