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Abstract: Shape is one of the most important 
features in Content Based Image Retrieval (CBIR). 
Many shape representations and retrieval methods 
exists. However, most of those methods either do not 
well represent shape or are difficult to do 
normalization (making matching hard). Among them, 
methods based Fourier descriptors (FD) achieve 
both well representation and well normalization. 
Different shape signatures have been exploited to 
derive FDs, however, FDs derived from different 
signatures can have significant different effect on the 
result of retrieval. In this paper, we build a Java 
retrieval framework to compare shape retrieval using 
FDs derived from different signatures. Common 
issues and techniques for shape representation and 
normalization are also analyzed in the paper. Data is 
given to show the retrieval result.  
 
Keywords: CBIR, Shape, Fourier descriptors, 
Retrieval. 
 
 
1. Introduction 
      Owing to the rapid development of digital and 
information technologies, people now live in a 
multimedia world. More and more multimedia 
information is generated and available in digital form 
from varieties of sources around the world. Along 
with the information, people appear that want to 
make use it. Before one can use any such 
information, however, it will have to be located first. 
At the same time, the increasing availability of 
potentially interesting material makes this search 
harder. Currently, solutions exist that allow searching 
for textual information. Many text-based search 
engines are available on the World Wide Web, and 
they are among the most visited sites, indicating they 
foresee a real demand. Identifying information is, 
however, not possible for visual content, as no 
generally recognized description of this material 
exists. Multimedia databases on the market today 
allow very limited searching for pictures using 

characteristics like color, texture and information 
about the shape of objects in the picture. 
      Visual information plays an important role in our 
society, visual information may be represented in 
various forms, such as still pictures, video, graphics, 
3D models, animation etc. One of the basic visual 
information needs to be processed is image, the need 
to find a desired image from a collection is shared by 
ordinary users as well as many professional groups, 
including journalists, design engineers and art 
historians. While it is attractive to provide higher 
level query using indexing methods such as keyword 
indexing and textual annotation to make use of 
facilitation of query language, such as SQL, from 
current database techniques, there are several 
drawbacks with these indexing methods [IP97]: (i) 
they do not conform to a standard description 
language, (ii) they are inconsistent, (iii) they are 
subjective, i.e. they might not capture the image 
content and (iv) they are time consuming. In order to 
overcome these drawbacks, recent researches on 
image retrieval focus on content based image 
retrieval (CBIR), which utilizes low level image 
features such as color, texture and shape. Several 
commercial and academic prototypes of CBIR 
systems have been developed recently to allow 
searching through image databases by image content. 
These include QBIC [Niblack et al 93], Photobook 
[PPS94], Virage [Bach et al 96] and VisualSEEK 
[SC96].  
      Shape is one of the most important low level 
image features due to that shape is a very important 
feature to human perception. Human beings tend to 
perceive scenes as being composed of individual 
objects, which can be best identified by their shapes. 
Besides, as far as query is concerned, shape is simple 
for user to describe, either by giving example or by 
sketching. Once images or scenes are broken down 
into individual objects, they can be exploited to 
facilitate CBIR. Applications on shape retrieval can 
be found in many areas, such as meteorology, 
medicine, space exploration, manufacturing, 



entertainment, education, law enforcement and 
defense.  
      Shape retrieval involves three primary issues: 
shape representation, shape similarity measure and 
shape indexing. Among them, shape representation is 
the most important issue in shape retrieval. Various 
shape representation methods, or shape descriptors, 
exist in the literature, these methods can be classified 
into two categories: region based versus contour 
based. In region based techniques, all the pixels 
within a shape are taken into accounted to obtain the 
shape representation. Common region based methods 
use moment descriptors to describe shape [TC88, 
TC91]. Region moment representations interpret a 
normalized gray level image function as a probability 
density of a 2D random variable. The first seven 
invariant moments, derived from the second and third 
order normalized central moments, are given by Hu 
[Hu62]. Because moments combine information 
across an entire object rather than providing 
information just at a single boundary point, they 
capture some of the global properties missing from 
many pure contour-based representations: overall 
orientation, elongation, etc. The first few terms of the 
invariant moments, like the first few terms of a 
Fourier series, capture the more general shape 
properties while the later terms capture finer detail. 
However, unlike Fourier series, it is difficult to 
obtain higher order invariant moments and relate 
them to shape. Comparing with region based shape 
representation, contour based shape representation is 
more popular. Contour based shape representation 
only exploit shape boundary information, these 
representation methods can be classified into global 
shape descriptors [Niblack et al 93], shape signatures 
[Davies97] and spectral descriptors [ZR72, HH98, 
YLL98]. Although simple to compute and also robust 
in representation, global descriptors such as area, 
circularity, eccentricity, axis orientation used in 
QBIC can only discriminate shapes with large 
dissimilarities, therefore, it is usually suitable for 
filtering purpose. Most shape signatures such as 
complex coordinates, curvature and angular 
representations are essentially local representations of 
shape features, they are sensitive to noise and not 
robust. In addition, shape representation using shape 
signatures require intensive computation during 
similarity calculation, due to the hard normalization 
of rotation invariance. As the result, these 
representations need further processing using spectral 
transform such as Fourier transform and wavelet 
transform.  
      Spectral descriptors include Fourier descriptors 
(FD) and wavelet descriptors (WD), they are usually 

derived from spectral transform on shape signatures. 
With Fourier descriptors, global shape features are 
captured by the first few low frequency terms, while 
higher frequency terms capture finer features of the 
shape. Apparently, Fourier descriptors not only 
overcomes the weak discrimination ability of the 
moment descriptors and the global descriptors but 
also overcome the noise sensitivity in the shape 
signature representations. Other advantages of FD 
method include easy normalization and information 
preserving. Recently, wavelet descriptors have also 
been used for shape representation [TB97, YLL98]. 
Wavelet descriptors have the advantage over Fourier 
descriptors in that they achieve localization of shape 
features in joint-space, i.e., in both spatial and 
frequency domains. However, the use of wavelet 
descriptors involves intensive computation in the 
matching stage due to wavelet descriptors are not 
rotation invariant. For example, both [TB97] and 
[YLL98] use best matching method to measure 
similarity between two feature vectors of the two 
shapes, this is impractical for higher dimensional 
feature matching. Therefore, wavelet descriptors are 
more suitable for model-based object recognition 
than data-driven shape retrieval, because for shape 
retrieval, which is usually conducted online, speed is 
essential.  
      Many FD methods have been reported in the 
literature, these include using FD for shape analysis 
[ZR72, Otterloo91], character recognition [PF77, 
Rauber94], shape coding [CB84], shape classification 
[KSP95] and shape retrieval [LS99, Sajjanhar97, 
HH98]. In these methods, different shape signatures 
have been exploited to obtain FD. However, FD 
derived from different signatures has significant 
different effect on shape retrieval. In this paper, we 
compare shape retrieval using FD derived from 
different shape signatures. The signatures considered 
are central distance, complex coordinates, curvature 
function, and cumulative angles. The rest of the paper 
is organized as following. In Section 2, we give the 
preprocessing techniques used in the boundary 
extraction. Section 3 describes different shape 
signatures and in Section 4, we discuss shape 
indexing using Fourier descriptors. Section 5 gives 
our experimental results and Section 6 concludes the 
paper.  
 
2. Pre-processing 
     The shapes we consider in this paper are outline 
shapes which can be described as single plane closed 
curves. The shapes in our database are obtained either 
from silhouette real world objects or from user-drawn 



shapes, the shapes are in the form of gray level 
images. The preprocessing is to extract the boundary 
information, or coordinates of the boundary, from the 
shape. The block diagram for preprocessing is shown 
in Figure1. 
 
 Input  
 
 image      
          
 
 
             Boundary 
  
            Coordinates   
 
Figure 1. Preprocessing of shape image 
 
      The first step in the preprocessing is to binarizing 
the shape image, a simple thresolding is applied to 
convert the gray level shape image into binary image. 
In reality, shape images are often corrupted with 
noise, as a result, the shape obtained from the 
thresholding usually has noise around the shape 
boundary, therefore, a denoise process is applied. The 
denoising process eliminates those isolated pixels and 
those isolated small regions or segments. For the non-
silhouette shape, the shape boundary is not always 
connected, therefore, a m-connectivity connection 
technique [GW92] is used to fill the gaps between 
boundary points. The shape is then traced using a 8-
connectivity contour tracing [Pavlidis82] technique 
to obtain the shape boundary coordinates. Some 
examples of preprocessing are shown in Figure 2.  

 
original image    denoised image      traced shape  

 
(a) user-drawn shape 

 

 
     original            binary         denoised         traced 
 

(b) silhouette shape 
 
Figure 2. Examples of preprocessing 

3. Shape signatures 
      In general, a shape signature is any 1-D function 
representing 2-D areas or boundaries. Four shape 
signatures are considered in this paper, these are 
central distance, complex coordinates (position 
function), curvature and cumulative angular function. 
The reason for choosing these four shape signatures 
for test and comparison is because they are mostly 
used in recent FD implementations and have been 
shown practical for general shape representation 
[Otterloo91]. In the following, we assume the shape 
boundary coordinates (x(t), y(t)), t = 0, 1, …, L-1, 
have been extracted in the preprocessing stage. 
 
3.1 Complex coordinates 
       A complex coordinates function is simply the 
complex number generated from the boundary 
coordinates: 
 
z(t) = x(t) + iy(t)    (3.1) 

 
In order to eliminate the effect of bias, we use the 
shifted coordinates function: 
 
z(t) = [x(t) – xc] + i[y(t) - yc]  (3.2) 
 
where (xc, yc) is the centroid of the shape, which is 
the average of the boundary coordinates 
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This shift makes the shape representation invariant to 
translation.  
 
3.2 Centroid distance 
      The centroid distance function is expressed by 
the distance of the boundary points from the centroid 
(xc, yc) (3.3) of the shape  
 
r(t) = ([x(t) – xc]2+ [y(t) - yc]2)1/2  (3.4) 
 
Due to the subtraction of centroid, which represents 
the position of the shape, from boundary coordinates, 
the centroid distance representation is also invariant 
to translation.  
 
3.3 Curvature signature 
        Curvature represents the second derivative of 
the boundary and the first derivative of the boundary 
tangent. The curvature function used in [KSP95] is 
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defined as the differentiation of successive boundary 
angles calculated in window w: 
 
K(t) = θ (t) - θ (t-1)   (3.5) 
 
where 
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however, this curvature function defined in this way 
has discontinuities at size of 2π in the boundary, 
therefore, in this paper we use 
 
K(t) = ϕ (t) - ϕ (t-1)   (3.7) 
 
where ϕ (t) is defined in (3.8). Curvature is invariant 
under translation and rotation. 
 
3.4 Cumulative angular function 
       Shape can also be represented by boundary 
angles, but due to that the tangent angle function θ (t) 
(3.6) can only assume values in a range of length 2π, 
usually in the interval of [-π, π] or [0, 2π]. Therefore 
θ (t) in general contains discontinuities of size 2π. 
Because of this, a cumulative angular function is 
introduced to overcome the discontinuity problem. 
The cumulative angular function ϕ(t), defined by 
Zahn and Roskies [ZR72] is the net amount of 
angular bend between the starting position z(0) and 
position z(t) on the shape boundary 
 
ϕ (t) = [θ (t) - θ (0)]mod(2π)  (3.8) 
 
In order to make it accord with human intuition that a 
circle is “shapeless”, a normalized cumulative 
angular function ψ(t) is used as the shape signature 
(assuming shape is traced in anti-clockwise direction) 
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Three of the smoothed shape signatures of the shape 
in Figure 2(b) are shown in Figure 3. 
 

 
 
             (a) r(t)                     (b) ϕ (t)                (c) K(t) 
  
              Figure 3. Shape signatures   
 

      All the four shape signatures described in this 
section are derived from shape boundary coordinates 
and  are information preserving, i.e. they allow full 
reconstruction of the shape of the contour 
[Otterloo91]. This is a important property for shape 
representation.  
 
4. Shape Indexing Using Fourier 
Descriptors 
      Fourier transformation on shape signatures is 
widely used for shape analysis, there are also some 
recent attempts to exploit it for shape retrieval 
[Sajjanhar97, HH98]. The Fourier transformed 
coefficients form the Fourier descriptors of the shape. 
These descriptors represent the shape of the object in 
a frequency domain. The lower frequency descriptors 
contain information about the general features of the 
shape, and the higher frequency descriptors contain 
information about finer details of the shape. Although 
the number of coefficients generated from the 
transform is usually large, a subset of the coefficients 
is enough to capture the overall features of the shape. 
The very high frequency information describes the 
small details of the shape, it is not so helpful in shape 
discrimination, therefore, they can be ignored. As the 
result, the dimensions of the Fourier descriptors used 
for indexing shapes are significantly reduced.  
 
4.1 Shape size normalization 
      Before applying Fourier transform on the shape 
signature, shape is first sampled to fixed number of 
points. In general, objects shape and model shape can 
have different sizes. Consequently, the number of 
data points of the object and model representations 
will also be different. For matching purposes, the 
shape boundary or the shape signature of objects and 
models must be sampled to have the same number of 
data points. In order to facilitate the use of the fast 
Fourier transform (FFT), the number of sampled 
points is chosen to be power-of-two integer. The 
sampling process not only normalize the sizes of 
shapes but also has the effect of smoothing the shape. 
The smoothing eliminates the noise in the shape 
boundary and the small details along the shape 
boundary as well. The number of resolution levels at 
which the shape signature will be decomposed is 
determined by the length of the shape boundary. By 
varying the number of sampled points, the accuracy 
of the shape representation can be adjusted. The 
larger the number, the more details the shape is 
represented, consequently, the matching result will be 
more accurate. In contrast, a smaller number of 
sampled points reduces the accuracy of the matching 



results, but improves the computational efficiency. 
There are generally three methods of normalization 
(i) equal points sampling; (ii) equal angle sampling; 
and (iii) equal arclength sampling.  
      Assuming K is the total number of candidate 
points to be sampled along the shape boundary. The 
equal angle sampling selects candidate points spaced 
at equal angle θ = 2π/K. The equal points sampling 
method selects candidate points spaced at equal 
number of points along the shape boundary. The 
space between two consecutive candidate points is 
given by L/K, where L is the total boundary points. 
The equal arclength sampling method selects 
candidate points spaced at equal arc length along the 
shape boundary. The space between two consecutive 
candidate points is given by P/K, where P is the 
perimeter of the shape boundary. 
     Among the three sampling methods, the equal 
arclength sampling method apparently achieves the 
best equal space effect, because the use of arclength 
as parameter in the signature achieves the unit speed 
of motion along the shape boundary [Otterloo91]. 
Therefore, we choose the equal arclength sampling to 
normalize the sizes of the shapes. For each shape, we 
select 64 candidate points with equal arclength space 
between them. A example of shape normalization is 
shown in Figure 4. As can be seen, the normalization 
successfully eliminates the noise and small details of 
the shape which can affect robustness of shape 
matching, while successfully extracts the outline 
feature from the shape and also keeps key salient 
points (sharp bend points) which is important to 
shape representation. 
 

  
              (a) original shape 

 

 
                            (b) normalized shape 
 

Figure 4. Shape size normalization 
 

4.2 Discrete Fourier transform on shape 
signatures 
       For a given shape signature described in Section 
3, s(t), t = 0, 1, …, L, assuming it is normalized to N 
points in the sampling stage, the discrete Fourier 
transform of s(t) is given by 
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The coefficients un, n = 0, 1, …, N-1, are usually 
called Fourier descriptors (FD) of the shape, denoted 
as FDn, n = 0, 1, …, N-1     
  
4.3 Indexing shape using Fourier descriptors 
      In shape retrieval, user is only interested in the 
outline features of similar shapes, the position, size 
and rotation of the shapes is not important. In order to 
make model shape and data shapes comparable, the 
shape representations must be invariant to translation, 
rotation and scale. Shape invariance is difficult to 
achieve under spatial domain, most invariance 
techniques in spatial domain, especially rotation 
invariance techniques, involve large amount of 
computation. However, shape invariance is easy to 
achieve for the FDs. All the four shape signatures 
described in Section 3 are invariant under translation, 
therefore, the corresponding FDs are also translation 
invariant. Rotation invariant of the FDs are achieved 
by ignoring the phase information and by taking only 
the magnitude values of the FDs. 
      For complex coordinates signature, all the N 
descriptors except the first one (DC component) are 
needed to index the shape. The DC component 
depends only on the position of the shape, it is not 
useful in describing shape thus is discarded. Scale 
normalization is achieved by dividing the magnitude 
values of all the other descriptors by the magnitude 
value of the second descriptor. The invariant feature 
vector used to index the shape is then given by 
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      For centroid distance signature and curvature 
signature, because the functions of (3.4) and (3.5) are 
real valued, there are only N/2 different frequencies 
in the Fourier transform, therefore, only half of the 
FDs in (4.3) is needed to index the shape. Scale 
invariance is then obtained by dividing the magnitude 
values of the first half of FDs by the DC component 
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      The periodic cumulative angular function of (3.9) 
is itself invariant under translations, rotations and 
scales [PF77], therefore, the FDs derived form this 
signature can be directly used to index the shape. 
Also due to its real value, only half of the FDs 
including the DC component is needed to index the 
shape. The feature vector to index the shape is then 
 
f = [ |FD0|, |FD1|, …, |FDN/2|] 
 
      Now for a model shape indexed by FD feature fm 
= [fm

1, fm
2 , …, fm

Nc] and a data shape indexed by FD 
feature fm = [fd

1, fd
2 , …, fd

Nc], since both features are 
normalized as to translation, rotation and scale, the 
Euclidean distance between the two feature vectors 
can be used as the similarity measurement 
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where Nc is the truncated number of harmonics 
needed to index the shape. 
 
5. Experiment results 
      FD method is widely used in shape analysis, 
however, the many FD methods often target 
particular applications. For example, Persoon and Fu 
[PF77] used FD for character recognition, Kauppinen 
et. al. used FD for military plane and character 
classification [KSP95]. In relation to shape retrieval, 
Huang et. al. use feature combining FD (using 
complex coordinates as shape signature) with 
invariant moments as filter to eliminate most 
irrelevant shapes from the query, after that a 
geometric indexing feature is used to refine the 
retrieval result. Due to too small the database 
composed of only cartoons, the retrieval result is 
largely irrelevant shapes. No data on recall and 
precision is reported. Sajjanhar [Sajjanhar] has 
conducted a comparison of shape retrieval using FD 
(using centroid distance) and that using other 
methods such as invariant moments and grid based 
method. Although detailed data on query precision 
and recall is given, there is same shortcoming as that 
in Huang et. al’s work, i.e. the database is too small. 
Only 70 synthetic polygon shapes are used, each 
shape is a single class, making the evaluation result 
unconvincing as no information is given on how the 
“perceptual similarity” between shapes is obtained. In 

our experiment, we use the same 70 synthetic shapes 
used by Sajjanhar and 25 bottle shapes to create our 
shape database. For each of the 95 shapes, four 
similar shapes are created by affine distortion with 
different parameters, one scaled shape is also 
generated for each of the 95 shapes. Then for each of 
the 70 synthetic shapes, a rotated shape is also 
generated. This create a database of 640 shapes 
including the original shapes. The distorted shapes of 
the two shapes in Figure 2 are shown in Figure 4. 
 

 
 
Figure 5. Distorted shapes of  the shapes in Figure 2. 
 
The database created in this way makes the 
evaluation more reliable. The performance of the 
retrieval is evaluated using precision and recall. 
Precision P is defined as the ratio of the number of 
relevant retrieved shapes r to the total number of 
retrieved shapes n. Recall R is defined as the ration of 
the number of retrieved relevant images to the total 
number m of relevant shapes in the whole database. 
Therefore 

             P = 
n
r

  R = 
m
r

 

 
In the experiment, we build a Java client-server 
framework to conduct the retrieval test. In the client 
site, a Java applet is used to run the query, since the 
applet can be embedded into Web page, the retrieval 
can be done online. We use 16 shapes selected from 
the database as query shapes, the average precision 
and recall of the retrieval result for each signature is 
given in Figure 6. Some retrieval screen shots are 
given in Figure 7, and online information for the shape 
retrieval can be accessed on: http://www-
mugc.cc.monash.edu.au/~dengs/shape/src/JAIApplet.html 
      It is clear from the diagram that the retrieval 
performance using FDs derived from centroid 
distance is the best among the four. The performance 
of complex coordinates and cumulative angular 
function are comparable, while the performance of 
curvature function is entirely a failure. The results are 
not difficult to explain. Although central distance is 
derived entirely from boundary information, it also 

http://www-mugc.cc.monash.edu.au/~dengs/shape/src/JAIApplet.html
http://www-mugc.cc.monash.edu.au/~dengs/shape/src/JAIApplet.html


contains the region information of the shape, that is 
to say, centroid distance captures both local and 
global features of the shape. Therefore, it is safe to 
say, central distance is a shape representation 
between contour based representation and region 
based representation. The drawback of non-
uniqueness of centroid distance can be overcome by 
using signed centroid distance [Otterloo91]. It is a 
desirable shape signature. The complex coordinates 
(or position function) and the cumulative angular 
function are purely boundary representation, they 
only capture the local features of the shape boundary, 
consequently, they are not as robust as the centroid 
distance. Although curvature is a very important 
feature of shape due to its importance for human 
shape perception, local curvature information only 
makes shape representation non-meaningful. 
Moreover, curvature is essential the second 
derivatives of shape boundary, it is very unreliable. 
For shape retrieval, only global curvature information 

such as convexity and concavity information of 
boundary segments is helpful. 
6. Conclusions 
      In this paper we have compared shape retrieval 
using FDs derived from four shape signatures. Our 
results show that shape retrieval using FDs derived 
from centroid distance signature is significantly 
better than that using FDs derived from the other 
three signatures. The property that centroid distance 
captures both local and global features of shape 
makes it desirable as shape representation. It’s robust 
and information preserving.  Although cumulative 
angular function has been used successfully for 
character recognition, it is shown that it is not as 
robust as centroid distance in discriminating general 
shapes. The curvature function can be eliminated as 
shape representation for retrieval purpose as it is too 
sensitive to noise and distortion. The use of curvature 
as shape representation requires intensive boundary 
approximation to make it reliable. 
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Figure 6. Precision and recall diagram. The numbers are in percentage. 
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   (c)      (d) 
 

Figure 7. Screen shots of shape retrieval using FDs derived from (a) centroid distance  
(b) cumulative angle (c) complex coordinates (d) curvature.  
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