The Arena

In demo version:

Square (300x300?)

origin lower left corner

Angles: in degree, up = 0, counterclockwise system

The Tank

Consists of Body, Radar, Gun

Body:

always 33x33 units, regardless of turning angle

Lateral movement:

· measured in units per turn

· can only be blocked by other robots or walls

· Robots move laterally using the

· ahead(distance)

· back(distance) and

· stop

commands.

· control over topspeed and acceleration by commands:

· speedtarget in (0..25]

· acceltarget

· deceltarget

· acceltarget is used for ahead and back, deceltarget is used for stop

· current states:

· _speedtarget

· _accel

· _acceltarget

· _deceltarget

Lateral movement can cause collision with

· other robots,

· cookies,

· mines,

· walls

which triggers events:

· cookie collision (handled by regcldcookie)

· mine collision (handled by regcldmine)

· robot collision (handled by regcldrobot)

· wall collision (handled by regcldwall)

Rotational Movement

· bodyleft, bodyright (degrees) rate: +- 5 per turn

· gunleft, gunright (degrees)
rate +- 10 per turn

· radarleft, radarright (degrees)
rate +- 15 per turn

· radar, gun and body can be locked to rotate together (lockall(), lockgun())

· radar, gun and body can be synced to the radar's direction (syncall(), syncgun())

Radar

command scan() sends a ping into radar's direction

reacts to

· other robots,

· cookies,

· mines,

· walls

sets multiple system variables

triggers events:

· cookie detection (handled by regdtccookie)

· mine detection (handled by regdtcmine)

· robot detection (handled by regdtcrobot)

· wall detection(handled by regdtcwall)

Gun

· Fires energy missiles

· Missiles move at constant speed

· Missile hitting robot subtracts the amount of energy contained in the missile from the robot

· energy is defined by fire() command between 1 and 7, the hit-energy amount contained depends on distance to target (closer = higher, this can e.g. be used in connection with the _scandist variable)

· After firing an energy missile, a robot's gun requires time to cool before another missile can be fired

· The fire command may be called continuously, but nothing will happen until _gunheat reaches zero

Cookies and Mines

Bonus cookies and mines appear randomly during games

The size of both cookies and mines is defined by an upright square measuring 9 x 9 units

When a robot collides with either a cookie or a mine the robot's energy is changed.

Cookies add energy to the robot, while mines take away energy

System Variables

Define the robot's state and environment

a relatively huge collection of variables from basic information (_gunheat, _gunaim, etc.) to more sophisticated ones (_cmrate,...)

Events

The following events can occur

	Event
	Trigger
	Registration
	Control

	core
	automatic
	regcore
	coreevents

	cookie detection
	_dtccookie
	regdtccookie
	dtccookieevents

	mine detection
	_dtcmine
	regdtcmine
	dtcmineevents

	robot detection
	_dtcrobot
	regdtcrobot
	dtcrobotevents

	wall detection
	_dtcwall
	regdtcwall
	dtcwallevents

	cookie collision
	_cldcookie
	regcldcookie
	cldcookieevents

	mine collision
	_cldmine
	regcldmine
	cldmineevents

	missile collision
	_cldmissile
	regcldmissile
	cldmissileevents

	robot collision
	_cldrobot
	regcldrobot
	cldrobotevents

	wall collision
	_cldwall
	regcldwall
	cldwallevents

	radio message
	_radio
	regradio
	radioevents

	radar ping
	_ping
	regping
	pingevents

	auto scan
	_moving
	regascan
	ascanevents

	custom
	boolean expression
	regcustom
	customevents

events are handled by callback functions, registered to the respective events

most important:

detection and collision events and the core event, that is fired continously by the control program itself.

Event Priority

callback functions are assigned priorities, events with better priority will interrupt weaker ones

The Scripting Language RSL

A small language with some operators and flow control structures.

User can create his/her own variables

do not think about RSL as a highly developed language !

Sections

define the body of functions

There are 2 special sections, Init and Dead. Init is the initial start

Sections are called either by gosub or as callback functions after an event was fired.

The section registered to the core event is called continously, it can be seen as the 'main section'

operators

	Description
	Usage
	Operand type
	Precedence

	cosine
	cos(operand)
	numeric
	1

	sine
	sin(operand)
	numeric
	1

	tangent
	tan(operand)
	numeric
	1

	arccosine
	acos(operand)
	numeric [-1 to 1]
	1

	arcsine
	asin(operand)
	numeric [-1 to 1]
	1

	arctangent
	atan(operand)
	numeric
	1

	arctangent of x/y
	atan2(x, y)
	numeric
	1

	exponentiation (power)
	operand1 ^ operand2
	numeric
	2

	multiplication
	operand1 * operand2
	numeric
	3

	division
	operand1 / operand2
	numeric
	3

	modulus
	operand1 % operand2
	numeric
	3

	addition
	operand1 + operand2
	numeric, string
	4

	subtraction
	operand1 - operand2
	numeric
	4

Flow Control

· if, else, elseif, endif

· while, next, break, endw

EXAMPLE

Entry section

register callback functions for collision with

and detection of other robot

Init

{

 name("Test")

 regcore(MyCore)

 regcldrobot(RobotCollision,1)

 regdtcrobot(RobotDetection,2)

}

the 'mainloop'

MyCore

{

if (_radaraim == 0)

ahead(_arenawidth)

bodyleft(90)

endif

radarleft(10)

scan()

}

#

RobotCollision

{

back(50)

}

#

RobotDetection

{

SyncGun()

fire(5)

scan()

}
