Image Compression

Fundamentals

Let P1 be a dataset, containing an image. The topic of compression is to reduce the number of bits the image is represented by (with or without changing the image content).

Let P2 be the compressed version of P1. If it is possible to reconstruct P1 (exactly) from P2, the amount of information (i.e. the picture itself) in P1 and P2 is the same, hence the representation of the picture by P1 contains redundant parts of information. 

To quantify the effect of compression, two measures are defined:

· Compression Ration and

· Relative Data Redundancy

Let P1 consist of n1, P2 of n2 bits. 

The Compression Ratio is defined by: Cr = n1/n2

Example: A picture 320x240, 24bit (3 byte, 1 byte per RGB-channel) per pixel can be saved without any compression by 320 x 240 x 3 = 230400 bytes (this is done e.g. if the picture is saved as 'bmp-file' using windows). Using JPG compression typically would lead to a dataset P2 of 10000 bytes. The compression ratio yielded is therefore 230400/10000 = 23.04.

The Relative Data Redundancy is defined by Rd = 1-1/Cr

Example: in our former example the relative data redundancy of the dataset P1 would be

1-1/23.04 = 0.95 = 95%.

Remark: since it is not known if P2 is the minimal representation, the relative data redundancy does not give the absolute value for the redundancy contained in P1, it is just the redundancy level in comparison to P2. 

Please read chapter 8, 8.1 for more information.

The Three Types of Redundancy

1. coding redundancy = red. with respect to data representation

2. interpixel redundancy = red. with respect to the image representation

3. psychvisual redundancy = red. with respect to the image content

Example for Coding Redundancy Reduction:

Let k = 0,1,2,3,L-1 be grayvalues, 

p(k) = probability for each grayvalue (the number of pixels having the grayvalue / total number of pixels in picture)

l(k) = the number of bits needed to represent k.

The usual, uncompressed case is, that l(k) is constant, e.g. 8 bit, i.e. every grayvalue k is represented by a number between 0..255.

Compression can be achieved, if grayvalues with high probability are represented with less bits.

Please read chapter 8.1.1 for further information.

An example for coding redundancy is given by Huffman Coding in chapter 8.4, pg 441,442.

Example for Interpixel Redundancy Reduction

Interpixel redundancy reduction takes advantage of special image content structures to define data structures. A typical example is the (one-dimensional) runlength encoding:

Let the following binary picture be given:

	0 
	0
	0
	0
	1

	0
	0
	0
	1
	1

	1
	1
	1
	1
	1


Attaching the single rows to one another yields the following one-dimensional representation:

	0
	0
	0
	0
	1
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1


Runlength encoding simply counts the number of equal bits and encodes this number:

	4
	1
	3
	7


The bits needed for this representation:

Since 7 is the highest value, we need 3 bits to represent each number in this vector, and the bitlength is 3bits * 4numbers = 12. The original length was 15 bits, the compression ratio is 15/12 = 1.25, the rel. data redundancy is 1-1/1.25 = 0.2 = 20% .

A more effective way of interpixel redundancy reduction is the LZW coding scheme (Lempel Ziv Welch). See chapter 8.4.2 for this algorithm. The LZW coding applies codes to patterns of data sequences. The basic idea is  to create codes with smaller bitlength than the sequence represented. The speciality of the LZW algorithm is , that the codebook, i.e. the scheme for decoding, is implicitly given in the encoded data and therefore must not be explicitly specified.

Example for Psychvisual Redundancy Reduction

Psychovisual redundancy reduction deals with lossy compression:  in contrast to coding and interpixel red. reduction the original dataset P1 can not be identically re-obtained by the reduced dataset P2. Psychovisual redundancy red. algorithms usually remove visually irrelevant information (e.g. small details in space or color) from images.

Typical examples are: color reduction, resolution reduction.

Resolution reduction: a picture given as a 1024x768 can be reduced to a picture given by 512x384 by merging 4 pixels to one, e.g. using the average value. Usually (for natural images) the content will still be recognizable, the compression ratio is 4.

Color reduction: a 24bit (3x8 bit for RGB) representation of each pixel is able to represent 2^24 colors, reducing the number of colors to 256 (=8bit) (often this is enough !) yields a compression ratio of 3.

Another algorithm of compressing a picture on the level of color is the IGS algorithm: basically it reduces the number of colors from 8 bit to 4 bit, using the higher 4 bitplanes. This quantization (compression ratio = 2) is tuned by artificially adding some controlled noise to achieve a more natural effect of the reduced picture. The IGS is only useful for natural images. See chapter 8.1.3 for the algorithm.

For more information read chapter 8.1.3 and 8.1.4.

8.1.4 deals with possibilities to measure the loss of information ('fidelity criteria').

Psychovisual Redundancy Reduction of Shapes using the Discrete Curve Evolution

Redundancy Reduction can not only be achieved for images represented by matrices. Let S be a shape represented by its boundary polygon. The discrete curve evolution (DCE) finds a subset Se( S  of visual important vertices of S to represent the shape by a reduced dataset with visual similar appearance. The algorithm is as simple as it is effective:

As long as the number of pixels is greater than some given value:


apply a value of visual informaton to each pixel


delete the pixel having the smallest value

loop

The visual information can be computed by a visually motivated formula, comparing the position of the respective pixel to its direct neighbors.

See the applet at http://knight.cis.temple.edu/~shape/shape/index.html for an example.

Image Compression Models

Usually all three types of redundancy reduction can be combined, e.g. a color reduced picture can be runlength encoded, the runlength code can be huffman encoded. Of course the decoding of the dataset P2 achieved must be in reverse order: huffman decoding followed by inverse runlength decoding. Note that the psychovisual reduction can NOT be reversed, since the information is lost, so there's no decoding step for psychovisual reduction. 

Chapter 8.2, 8.2.1, 8.2.2 deals with image compression, please read and have a look at the figures.

The interesting part is the channel encoder (chapter 8.2.1): after the redundancy reduction, the dataset P2 is artificially enhanced, i.e. some controlled redundancy is added on purpose. The reason for this is, that the general model deals with data transmission, e.g. by the w.w.web, where single units of data can be lost. Since the redundancy is reduced first, the loss of a single unit of data can be deadly, e.g. using a runlength encoded picture. Adding redundancy in a controlled way gives the opportunity to detect and repair lost data up to a certain amount.

Chapter 8.2.2 gives an example for redundancy enhancement (or channel encoding): the (7,4) Hamming code. The basic idea: Take 4 bits and add a 'parity' bit to 3 combinations of these 4 bits. The parity bit for each combination is chosen in a way that the parity, i.e. the number of bits being '1', of the 3 bit combination plus the parity bit is always even. Since 3 bits are added to each 4 bits of data, the code yields 7 bit per 4 bit (guess why it's called (7,4) Hamming Code), so the (anti)-compression ratio is 4/7, and the rel. redundancy is 1-7/4 = -0.75, which means we added 75% of redundancy.

Please read chapter 8.2.2 for detailed information on the hamming code.

Transform Coding

The image compression schemes so far all worked directly on the image itself, i.e. in the spatial or color domain. Transform coding first transforms the image into another representation (e.g. the fourier space) and applies (psychovisual) compression techniques in the new domain. The advantage of this procedure is, that the transformed representation allows for easier detection of visually unimportant content, e.g. for psychovisual red. reduction, or allows for a more compact data representation.

Chapter 8.5.2 gives an overview over transform coding, please don't try to go into detail of the different transformations. A typical transformation scheme is the following:

· Decompose the picture into blocks of 8x8 pixels

· Transform each of these blocks into another space, e.g. the fourier space. Different transformations are DCT (Discrete Cosine Transform), or the Walsh Hadmard Transform, a binary version of the DCT. In principle they are the same as the fourier transform: they yield a set of 64 nunbers for each 8x8 block, representing the weights for the basic functions (e.g. fourier: 2D sine & cosine).

· Examine the set of the 64 weights,  just use weights above a certain threshold

· use a runlength encoding scheme to encode the weights needed.

· Do this for every block

· Finally apply a data redundancy coding scheme (e.g. huffman) to the whole set of data

A typical example for a transform coding scheme is the JPEG standard, described in chapter 8.6.2.

