	CIS 068/2
	FINAL EXAM
	Date : 5 / 12 / 03

	Number of Questions:
 13 + 1 bonus question

Total Points:

 50 + 4

	NAME (printed):
	

	Question 1 (2 points)

What is the output of the following program:

public class TestClass {

private static int s = 10;

private int x = 20;

private int y = 30;

private void process(int z) {

x = z + s;

s = y;

System.out.println(x);

}

public static void main(String args[]) {

TestClass o1 = new TestClass();

TestClass o2 = new TestClass();

o1.process(50);

o2.process(100);

}

}

Answer: _______________
	Question 2 (2 points)

Extend the following program-segment in a way that it notifies the user of runtime-errors instead of crashing:
// precondition: i is an integer read in from the console

...

Integer m=null;

if (i==3)

m = new Integer(1000/i);

System.out.printlnt(m.intValue() + “”);

...
	Question 3 (3 points)

Implement the equals method for the following class:

public class Point {

public int x = 0;

public int y = 0;

public Point(int x, int y) {

this.x = x;

this.y = y;

}

public Boolean equals (Object o) {

}
}

	Question 4 (parts: a,b)

Implementing a button using javax.swing, a program typically contains code like:

...

JPanel p = new JPanel();

JButton b = new JButton();

b.addActionListener(this);
// adding...

p.add(b);

// adding...

...

a) (2 points):

There are two types of ‘adding’ in this code. Explain the difference between them:
b) (1 point):

Which requirement must be fulfilled by the class ‘this’ (i.e.: the class containing the method containing the specific line) such that the line

...

b.addActionListener(this);
// adding...

...

makes sense ?
	Question 5 (3 points)

Java provides different types of layouts to simplify the process of designing the graphical user interface. Examples are

	

	
	
	

	

· the BorderLayout
	
	
	

	
	
	

	
	
	

· or the GridLayout

Combining them creates more sophisticated layouts.
Show how to create the following layout :
	

	
	
	

	
	
	
	
	

	
	
	

	
	

	
	

	Question 6. (4 points)

Select the best answer to each question below from the choices:
linked list, stack, queue, array, iterator

· a referenced element of a __________________, is removable in O(1)

· An internal _____________ is heavily used by the JVM (Java Virtual Machine) when processing recursive functions

· You have random access in O(1) to every element of a ___________

· In Java, the ________________ can be used to traverse any kind of Collection
· A ____________ can be implemented using a circular array

	Question 7 (parts: a,b)

Consider the following set S, a hashtable A and a hashing function f :

S = { 3.1 , 4.2 , 22.3, 20.4 }

A=double[n], n = size of array

f = round(s) % n, (again: n = size of array A)

a) (2 points):

Please insert the elements into the hashtable, assuming n = 7:

	
	
	
	
	
	
	

b) (3 points):
What is the minimum size nmin of A such that there’s no collision ?
nmin= _____

	Question 8 (parts: a,b,c).

The following code shows a sorting method called Dumb-Sort. It combines the bad parts of the behavior of Bubble Sort and Selection Sort and therefore honestly deserves its name.
public class sortingQuestion {

 static int[] A={3,6,8,2,9,1};

 //-------------------------------------

 // main

 public static void main(String[] args) {

 dumbSort(A);

 }

 //-----------------------------------

 // DUMBSORT

 static void dumbSort(int[] A){

 for (int i=0;i<A.length-1;i++){

 for (int j=i+1;j<A.length;j++){

 if (A[i] > A[j]){

 int f = A[i];

 A[i]=A[j];

 A[j]=f;

 }

 }

 // end of single pass
 }

 }

}
a) (2 points):
What does the array A look like after the first / second pass of dumbSort ?

(a single pass is one pass of the outer-loop, see comment in program)
	
	
	
	
	
	

after first pass:

	
	
	
	
	
	

after second pass:

b) (2 points):
what is the disadvantage compared to Bubble Sort ?

(hint: what happens if A is presorted ?)

c) (2 points):
what is the disadvantage compared to Selection Sort ?
(hint: what happens in the inner loop ?)
	Question 9 (3 points)

Illustrate merge sort on the following numbers:

26 87 74 23 43 46 45 99

	Question 10 (3 points)

Show the heap that is built when the following numbers are inserted in the order given:

26 87 74 23 43 46 45 99

	Question 11 (parts: a,b)

Consider the following list-structure:

[image: image1.wmf]
Each of the n nodes of the structure should be an instance of the class ‘NodeSingle’, defined below:

public class NodeSingle{

int value;

NodeSingle next;

}

The list is implemented by the class SingleLinkedList:
public class SingleLinkedList{

NodeSingle start = null;

NodeSingle end = null;

int size = 0; // number of elements in list

...

public void addFirst(int val){ };

public int get(int index){ };

public int removeLast{ };

...

}
a) (3 points for each method, 9 points total):
Please implement the methods. Don’t forget:
· you have to handle the ‘size’ variable.

· always take care of the ‘end’ reference !
//--

// addFirst: Inserts a new element at the beginning of the // list, assigning the integer value ‘val’ to it

public void addFirst(int val){

}
//--

// removeLast: Removes the last element from

// this list and returns its value
public int removeLast(){

}

//--

// public int get(int index): Returns the integer-value at

// the specified position in this list

// returns -1 if index is out of bounds

// THIS METHOD SHOULD TAKE ADVANTAGE OF THE REFERENCE TO
// THE LAST ELEMENT IF POSSIBLE
public int get(int index){
}

b) (2 points):

What is the complexity of removing an element at the last position (removeLast)?

Answer:
O(___)

What is the complexity of reading an element at an arbitrary position (get) ?
Answer:
O(___)
	Question 12 (parts: a,b)

a) (3 points):

What is the output of the following program ?

public class Untitled1 {

 static LinkedList ll = new LinkedList();

 public static void main(String[] args) {

 for (int i=0;i<10;i++){

 ll.addLast(new Integer(i));

 }

 Iterator it=ll.iterator();

 int i=0;

 while(it.hasNext()){

 it.next();

 if (i % 3 == 0)

 it.remove();

 i++;

 }

 it=ll.iterator();

 while(it.hasNext()){

 Integer iv = (Integer)it.next();

 System.out.println(iv); // prints the value of iv

 }

 }

}
Answer:
b) (1 point):
Why must the field ‘LinkedList ll’ be declared static ?

	Question 13. (1 point)

Which of the following is correct:
· abstract classes may not contain non-abstract (=implemented) methods
· interfaces may contain non-abstract (=implemented) methods

· an abstract class may implement the methods of an interface

· an interface may be derived from multiple abstract classes

	BONUSQUESTION !

Question 14. (4 points)

Let the nodes of an arbitrary tree (= tree without restriction of any kind on number and order of children) be instances of the class NodeTree:

public class NodeTree{

int

value;

NodeTree
children[];

}
Write a short recursive code that traverses a given tree (referenced by its root-node), and prints out the integer value ‘value’of every node.

public void traverseTree(NodeTree root){

}

	
That’s it ! Goodbye !

_1113899899.bin

