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Abstract

Fastuserleel locking is analternatve locking
mechanisnto the typically heary weightker-
nel approachesuchasfcntl locking and Sys-
temV semaphoresHere, multiple processes
communicate locking state through shared
memoryregions and atomic operations. Ker-
nel involvementis only necessaryhenthere
is contentionon a lock, in orderto perform
gueueingandschedulingunctions.In this pa-
per we discussthe issuesrelatedto userlevel
locking by following the history of ideasand
the codeto the currentday. We presenthe ef-
ficagy of "futexes" throughbenchmarkspoth
syntheticand through adaptationdo existing
databasesWe concludeby presentinghe po-
tential future directionsof the "futex" inter
face.

1 Introduction

Linux™?! has seen significant growth as a
sener operatingsystemandhasbeensuccess-
fully deployedin enterpriseernvironmentsfor
Web, file and print serving. With the deploy-
mentof Version2.4, Linux hasseenatremen-
dous boostin scalabiity and robustnessthat

1Linux is atrademarlof Linus Torvalds

malkesit now feasibleto deploy evenmorede-
mandingenterpriseapplicationssuchas high
end databasesbusinessintelligence software
andapplicationseners. As aresult,wholeen-
terprise businesssuitesand middlewvare such
asSAP™ Websphere™Qracle,DB2™?2 etc.,
arenow availablefor Linux.

For theseenterpriseapplicationsto run effi-

ciently on Linux, or on ary other operating
systemfor that matter the OS must provide
the proper abstractionsand services. Enter

prise applicationsand applicationssuitesare
increasingly built as multi process/ multi-

threadedapplications. Multi-threadedappli-
cations can take better adwvantage of SMP
hardware,while multiple processesillows for

higherdegreesof fault tolerancej.e., a single
processbortdoesnotnecessarilypringtheen-
tire applicationdown. Furthermore,applica-
tions suitesare often a collection of multiple
independensubsystems.

Despite their functional separation,the pro-
cessesrepresentingthese subsystemsoften
mustcommunicatewith eachotherandshare
stateamongsteachother Examplesof this
aredatabassystemsyhichtypically maintain
sharedl/O buffersin userspace. The buffers

2All third party trademarksarethe propertyof their
respectre owners.
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areconcurrentlyaccessetby variousdatabase
enginesandprefetchingprocesses.

Accessto such sharedstate must be prop-
erly synchronizedhrougheither exclusive or
sharedlocks. Exclusve locks allow only
one party accesdo the protectedentity, while
sharedlocks allow multiple reader— single
writer semantics. Synchronizationimplies a
sharedstate, indicating that a particular re-
sources availableor busy, andameando wait
for its availability. Thelatteronecaneitherbe
accomplishedhroughbusy-waiting or through
aexplicit / implicit call to thescheduler

In traditional UNIX™ 32 systems,SystemV
IPC (inter processcommunication)such as
semaphaogs msgqueuessodkets and the file
locking mechanisn{flock()) arethe basic
mechanism$or two processeso synchronize.
Thesemechanismsxposean opaquehandle
to a kernel object that naturally provides the
sharedstateand atomic operationdn the ker-
nel. Servicesmustbe requestedhroughsys-
temcalls (e.g.,semop() ). The dravbackof
this approachs thateverylock accessequires
asystencall. Whenlockshave low contention
rates,the systemcall can constitutea signifi-
cantoverhead.

Onesolutionto this problemis to deploy user
level locking, which avoids someof the over-

headassociateavith purelykernel-basedbck-

ing mechanismslt relieson a userlevel lock

locatedin a sharedmemoryregion and modi-

fied throughatomic operationgo indicatethe

lock status. Only the contendectaserequires
kernelintervention. Theexactbehaior andthe

obtainablgperformancearedirectly affectedby

how andwhenthekernelservicesareinvoked.

The idea describedhere is not nev. Some
of the foundationof this paperare described
in [4], [7] and [6]. In [2] theimpactof lock-

ing on JVM performancas discussed.

SUNIX is atrademarkof The OpenGroup

In this paperwe aredescribinga particularfast
user level locking mechanismcalled futexes
thatwasdevelopedin the contet of the Linux
operatingsystem.It consistsof two parts,the
userlibrary anda kernelservicethathasbeen
integrated into the Linux kernel distribution
version2.5.7.

The paperis organizedas followed. In sec-
tion 2 we describethe basic behaioral and
functional requirementsof a userlevel lock-
ing mechanismin section3 we describesome
of theearlierapproachethatled to thecurrent
designof futexesand the futexes themseles.
In section4 we provide a performanceassess-
menton asyntheticanda databaséenchmark.
In section5 we elaborateon currentandfuture
effortsandin 6 we conclude.

2 Requirements

In this sectionwe are statingsomeof the re-

guirementsof a fastuserlerel locking mecha-
nism that we derived as part of this work and
thatwerepostedto usasrequirementdy mid-

dlewareproviders.

Therearevariousbehaioral requirementshat
needto be consideredMost centeraroundthe
fairnes=of thelocking schemendthelock re-
leasepolicy. In afair locking schemehelock
is grantedin the orderit wasrequestedi.e., it
is handedverto thelongestwaitingtask. This
canhave negative impacton throughputdueto
the increasechumberof context switches. At
the sametime it canleadto the so called con-
voy problem. Since,thelocks aregrantedin
the order of requestarrival, they all proceed
at the speedof the slowest process,slowing
down all waiting processesA commonsolu-
tion to the corvoy problemhasbeento mark
thelock availableuponreleasewake all wait-
ing processeandhave themrecontendor the
lock. This is referredto asrandom fairness,
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althoughhigherpriority takswill usuallyhave
an adwantageover lower priority ones. How-
ever, this alsoleadsto the well known thun-
dering herd problem. Despitethis, it can
work quitewell onuni-processosystemsf the
firsttaskto wake releaseshelock beforebeing
preemptedor scheduledallowing the second
herdmemberto obtainthe lock, etc. It works
lessspectacularlyon SMP. To avoid this prob-
lem, oneshouldonly wake up onewaiting task
uponlock release.Marking the lock available
aspartof releasingt, givesthe releasingask
the opportunityto reacquirethe lock immedi-
ately again, if so desired,and avoid unneces-
sarycontext switchesandthe corvoy problem.
Somereferto theseasgreedy, asthe running
taskhasthe highestprobability of reacquiring
the lock if the lock is hot. However, this can
lead to stanation. Hence,the basic mecha-
nisms must enableboth fair locking, random
locking andgreedyor cornvoy avoidancelock-
ing (short ca-locking). Another requirement
is to enablespin locking, i.e., have an appli-
cationspin for the availadilty of the lock for
someuserspecifiedtime (or until granted)be-
fore giving up and resolvingto block in the
kernelfor its availability. Hencean applica-
tion hasthe chadce to either(a) block waiting
to benotifiedfor thelock to bereleasedor (b)
yield the processountil the threadis resched-
uled andthenthe lock is tried to be acquired
again, or (c) spinconsumingCPU cyclesuntil
thelock is released.

With respectto performance there are basi-
cally two overridinggoals:

» avoid systemcalls if possible,assystem
calls typically consumeseveral hundred
instructions.

 avoid unnecessargontect switches:con-
text switchesleadto overheadassociated
with TLB invalidationsetc.

Hence,in fastuserlerel locking, we first dis-
tinguishbetweertheuncontendedndthecon-
tendedcase. The uncontendeaaseshouldbe
efficient and shouldavoid systemcalls by all
meansIn thecontendedasewe arewilling to
performasystemcall to blockin thekernel.

Avoiding systemcallsin theuncontendedase
requiresa sharedstatein userspaceaccessible
to all participatingprocesses/task:his shared
state referredto asthe userlock, indicatesthe
statusof thelock, i.e., whetherthelock is held
or not and whetherthereare waiting tasksor
not. This s in contrastto the SystemV IPC
mechanismsvhich merelyexportsa handleto
theuser andperformsall operationsn theker-
nel.

Theuserockis locatedin asharednemoryre-
gionthatwascreateviashmat() ormmap().
As aresult,it canbelocatedatdifferentvirtual
addressedn differentaddressspaces. In the
uncontendecdtase,the applicationatomically
changesthe lock statusword without enter
ing into the kernel. Hence,atomic operations
such as atomic_inc(), atomic_dec,
cmpxchg() , and test_and_set() are
neccessaryn user space. In the contended
case,the applicationneedsto wait for the re-
leaseof the lock or needsto wake up a wait-
ing task in the caseof an unlock operation.
In orderto wait in the kernel, a kernel object
is required thathaswaiting queuesassociated
with it. Thewaiting queuegrovide thequeue-
ing andschediling interactions Of coursethe
aforementionedPC mechanismgan be used
for this purpose. However, theseobjectsstill
imply aheary weightobjectthatrequiresa pri-
ori allocationandoftendoesnot preciselypro-
vide the requiredfunctionality Anotheralter
native thatis commonlydeplo/edarespinloks
wherethe tak spinson the availability of the
userlock until granted.To avoid too mary cpu
cyclesbeingwastedthetaskyieldstheproces-
soroccasionally



Ottawa Linux Symposium 2002

482

It is desirableto have the userlock be handle-
free. In other words insteadof handlingan

ogaquekernel handle requiring initialization

and crossprocessglobal handles,it is desir

ableto addressocksdirectly throughtheir vir-

tualaddressAs a consequencdernelobjects
canbe allocateddynamicallyand on demand,
ratherthanapriori.

A lock, though addressedby a virtual ad-
dress,can be identified conceptuallythrough
its global lock identity, which we defineby the
memoryobjectbackingthevirtual addresand
the offset within that object. We notatethis
by the tuple [B,O]. Threefundamentalmem-
ory typescan be distinguishedthat represent
B: (a) anorymousmemory (b) sharednemory
seggment,and(c) memorymappediles. While
(b) and(c) canbe usedbetweenmultiple pro-
cesses(a) canonly be usedbetweenthreads
of the sameprocess.Utilizing the virtual ad-
dressof thelock asthe kernelhandlealsopro-
videsfor anintegratedaccessnechanisnthat
ties the virtual addressautomaticallywith its
kernelobject.

Despitethe atomic manipulationof the user
level lock word, race conditionscan still ex-
istsasthe sequencef lock word manipulation
and systemcalls is not atomic. This hasto
beresohedproperlywithin thekernelto avoid
deadlockandinproperfunctioning.

Anotherrequiremenis thatfastuserevel lock-
ing should be simple enoughto provide the
basic foundation to efficiently enable more
complicatedsynchronizationconstructs,e.g.
semaphoresiwlocks, blocking locks, or spin
versionf these pthreadnmutexes,DB latches.
It should also allow for a clean separation
of the blocking requrementstowardsthe ker-
nel, so that the blocking only hasto be im-
plementedwith a small set of different con-
structs. This allows for extendingthe use of
the basic primitives without kernel modifica-

tions. Of interestis the implementationof
mutex, semaphoreand multiple reader/single
writer locks.

Finally, a solution needsto be found that en-

ablestherecovery of “dead” locks. We define
unrecwerablelocksasthosethathave beenac-

quiredby a processandthe procesderminates
withoutreleasinghelock. Thereareno corve-

nientmeandor the kernelor for the otherpro-

cessedso determinewhich locks are currently
heldby aparticularprocessaslock acquisition
canbe achiezed throughusermemorymanip-
ulation. Registeringthe processs “pid” after

lock acquisitionis not enoughas both opera-
tionsarenotatomic. If the processliesbefore
it canregisterits pid or if it clearedits pid and

beforebeingablethereleasehelock, thelock

is unrecwerable.A protocolbasedsolutionto

this problemis describedn [1]. We have not

addressethis problemin our prototypesyet.

3 Linux Fast User level Locking:
History and | mplementations

Having stated the requremerts in the previ-

ous section,we now proceedto describethe
basicgeneralimplementationissues. For the
purposeof this discussionwe define a gen-
eral opaquedatatypeulock t to represent
the userlerel lock. At a minimum it requires
astatusword.

typedef struct ulock t {
long status;

} ulock_t;

We assumethat a sharedmemoryregion has
been allocated either through shmat() or
throughmmap() andthatany userlocks are
allocatedinto this region. Again note,thatthe
addresse®f the samelock neednot be the
sameacrossall participatingaddressspaces.
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The basic semaphorefunctions UP() and
DOWN()canbeimplementedasfollows.

static inline int
usema_down(ulock_t

{

*ulock)

if (! __ulock_down(ulock))

return  0;
return  sys_ulock wait(ulock );
}
static inline int

usema_up(ulock_t

{

*ulock)

if  ('__ulock_up(ulock))
return 0;

return  sys_ulock_wakeup(ulo ck);

The __ulock_down() and
__ulock_up() provide the atomic in-
crementanddecremenbperationson the lock
statuswvord. A nonpositive count(status)ndi-
catesthatthelock is notavailable.In addition,
a nggative count could indicate the number
of waiting tasksin the kernel. If a contention
is detected, i.e. (ulock->status <=
0) , the kernelis invoked throughthe sys_*
functions to either wait on the wait queue
associatedvith ulock or releasea blocking
taskfrom saidwaitqueue.

All countingis performedon the lock word
and race conditions resulting from the non-
atomicity of the lock word must be resolhed
in the kernel. Due to suchraceconditions,a
lock canreceve a wakeup beforethe waiting
proceshada chanceo enqueuatself into the
kernelwait queue We describebelon how var-
ious implementatiorresohed this racecondi-
tion aspartof thekernelservice.

Oneearlydesignsuggesteavasthe explicit al-
locationof akernelobjectandtheexportof the
kernel objectaddressasthe handle. The ker-
nel objectwascomprisedof a wait queueand
a uniquesecuritysignature.On every wait or

wakeupcall, the signaturewvould be verifiedto
ensurghatthehandlepassedndeedwasrefer
ring to avalid kernelobject. Thedisadwantages
of this approachhave beenmentionedin sec-
tion 2, namelythata handleneedgso be stored
in ulock_t andthat explicit allocationand
deallocationof the kernelobjectarerequired.
Furthermoresecurityis limitedto thelengthof
thekey andhypotheticallycouldbeguessed.

Another prototype implementation, known

as ulocks [3], implements general user
semaphoresvith both fair and corvoy avoid-

ance wakeup policy. Mutual exclusive

locks are regarded as a subsetof the user
semaphores. The prototype also provides
multiple reader/singlenriter locks (rwlocks).
The userlock objectulock t consistsof a
lock word and an integer indicating the re-

quired numberof kernel wait queues. User
semaphoresand exclusive locks are imple-

mentedwith onekernelwait queueandmulti-

ple reader/singlevriter locks areimplemented
with two kernelwait queues.

This implementationseparateshe lock word
from the kernelwait queuesand other kernel
objects,i.e., the lock word is never accessed
from the kernel on the time critical wait and
wakeupcodepath. Hencethe stateof the lock
andthe numberof waiting tasksin the kernel
is all recordedn thelock word. For exclusive
locks, standardcounting as describedin the
generalulock t discussionis implemented.
As with generakemaphores positve number
indicatesthe numberof times the semaphore
canbeacquired,’0” andlessindicatesthatthe
lock is busy, while the absoluteof a negative
numberindicatesthe numberof waiting tasks
in thekernel.

The “premature” wakeup call is handled
by implementing the kernel internal wait-
queues using kernel semaphoreg(struct

semaphore ) which are initialized with a
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value 0. A prematurewakeup call, i.e. no
pendingwaiter yet, simply increaseshe ker-
nel semaphore countto 1. Oncethe pend-
ing wait arrivesit simply decrementghe count
back to 0 and exits the systemcall without
waiting in thekernel. All thewait queuegker-
nelsemaphoresyssociatewvith auserock are
encapsulateth asinglekernelobject.

In the rwlocks case the lock word is split into
threefields: write locked (1 bit), writeswaiting
(15 bits), readerq16 bits). If write locked, the
readers indicatethe numberof taskswait-
ing to readthe lock, if not write locked, it in-
dicateshenumbersof tasksthathave acquired
readaccesdo the lock. Writers are blocking
on a first kernelwait queue while readersare
blockingonasecondkernelwait queueassoci-
atedwith aulock. To wakeupmultiple pending
readrequeststhe numberof taskto be woken
upis passedhroughthe systemcall interface.

To implementrwlocks and ca-locks, atomic
compareand exchange supportis required.
Unfortunatelyon older 386 platformsthat is
notthecase.

The kernel routines must identify the kernel
object that is associatedwith the user lock.
Sincethelock canbeplacedat differentvirtual
addresses differentprocessesa lookup has
to be performed. In the commonfastlookup,
thevirtual addresof the userlock andthe ad-
dressspaceare hashedio a kernel object. If
no hashentry exists, the properglobalidentity
[B, O] of thelock mustbe establishedFor this
we first scanthe calling processs vmalist for
the vma containingthe lock word andits off-
set. The global identity is thenlooked up in
a secondhashtablethatlinks globalidentities
with theirassociate#ternelobject.If nokernel
objectexists for this globalidentity, oneis al-
located,initialized andaddedo the hashfunc-
tions. Theclose() functionassociatedavith
asharedegion holdingkernelobjectsis inter-

cepted,so that kernel objectsare deletedand

thehashtablesarecleanedip,onceall attached
processehave detachedfrom the sharedre-

gion.

While this implementatiomprovidesfor all the
requirementsthe kernelinfrastructureof mul-
tiple hashtablesandlookupswasdeemedoo
heavy. In addition, the requirementfor com-
pare and exchangeis also seento be restric-
tive.

3.1 Futexes

With several independenimplementationg8,

9, 10] in existence,the time seemedight in

early 2002to attemptto combinethe bestel-

ementsof eachto producethe minimum use-
ful subsetfor insertioninto the experimental
Linux kernelseries.

Therearethreekey pointsof the original futex
implementationwhich wasaddedto the 2.5.7
kernel:

1. We usea uniqueidentifier for eachfutex
(which canbe sharedacrosddifferentad-
dressspaces,so may have different vir-
tual addresse# each): this identifier is
the “struct page” pointer and the offset
within that page. We incrementthe ref-
erencecounton the pageso it cannotbe
swappedoutwhile theprocesss sleeping.

2. The structureindicating which futex the
processs sleepingonis placedin a hash
table,andis createduponentryto thefu-
tex syscallsonthe processs kernelstack.

3. The compression of “fast userspace
mutex” into “futex” gave a simpleunique
identifier to the sectionof code and the
functionnamesused.
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3.1.1 The25.7 Implementation

The initial implementation which was
judged a suficient bags for kernelinclusion
used a single two-agument system call,
“sys_futex(struct futex *, int
op)” . Thefirst agumentwasthe addressof
the futex, and the secondwas the operation,
usedto furthur demultiplex the systemcall
and insulate the implementation someavhat
from the problems of system call number
allocation. The latter is especiallyimportant
asthe systemcall is expandasnew operations
are required. The two valid op numbersfor
this implementation were FUTEX_ UP and
FUTEX_DOWN.

The algorithm was simple, the file
linux/kernel/futex.c containing 140 code
lines,and233in total.

1. The useraddresswvas checled for align-
ment and that it did not overlap a page
boundary

2. The pageis pinned: this involves look-
ing uptheaddressn theprocesss address
spaceto find the appropriate”struct
page *”, andincrementingts reference
countsoit cannotbe swappedout.

3. The “struct page *” and offset
within the pageareadded,andthatresult
hashedusingthe recentlyintroducedfast
multiplicative hashingroutines[11], to
give ahashbucketin thefutex hashtable.

4. The“op” aguments thenexamined.If it
is FUTEX_DOWiken:

(a) Theprocesss markedINTERRJPT-
IBLE, meaningt is readyto sleep.

(b) A *“struct futex g ” ischained
to the tail of the hashbucket deter
minedin step3: the tail is chosen

to give FIFO orderingfor wakeups.
This structurescontainsa pointer
to the processand the “struct
page *” andoffsetwhich identify
thefutex uniquely

(c) The pageis mappednto low mem-
ory (if it isahighmemorypage) and
anatomicdecremenbf thefutex ad-
dressis attempted, then unmapped
again. If thisdoesnotdecrementhe
counterto zero,we checkfor signals
(settingthe errorto EINTR andgo-
ing to the next step),scheduleand

thenrepeathis step.

(d) Otherwise,we now have the futex,
or have receved a signal, so we
markthis processRUNNING, unlink
ourseles from the hashtable, and
wake the next waiterif thereis one,
andreturnO or -EINTR . We have
to wake anotherprocessso that it
decrementthefutex to-1toindicate
thatit is waiting (in the casewhere
we have the futex), or to avoid the
racewherea signalcamein just as
we were woken up to get the futex
(in the casewherea signalwas re-
ceived).

5. If theopamgumentwasFUTEX_UP:

(a) Map the pageinto low memoryif it
is in ahighmemorypage

(b) Set the count of the futex to one
(“available™).

(c) Unmapthe pageif it was mapped
from high memory

“We do not evenattemptto decrementhe addressf
it is alreadynegative, to avoid potentid wraparoundWe
dothedecremengvenif thecountelis zero,as"-1" indi-
cateswe aresleepingandhencehasdifferentsemantics
thanO.
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(d) Search the hash table for the
first “struct  futex_gq " associ-
atedwith thisfutex, andwake upthat
process.

6. Otherwise|f the op agumentis anything
else,settheerrorto EINVAL.

7. Unpinthepage.

While there are several subtletiesin this im-

plementation;it givesa secondmajor adwan-
tageover SystemV semaphoresthereareno
explicit limits on how mary futexesyou can
create,nor can one futex user“starvwe” other
usersof futexes. This is becawse the futex is
merelya memorylocationlike ary otheruntil

thesys futex syscallis entered,andeach
processcanonly do onesys_futex  syscall
atatime, sowe arelimited to pinningonepage
perprocessnto memory atworst.

3.1.2 What about Read-Write L ocks?

We consideredan implementationof “FU-

TEX_READ_DONN" et. al, which would
be similar to the simple mutual exclusion
locks, but before adding theseto the kernel,
Paul Mackerrassuggested designfor creat-
ing read/writelock in userspacdy usingtwo

futexesanda count: fastuserspaceeadivrite

locks or furwodks. This implementatiornpro-
videsthe benchmarkor ary kernel-basedm-

plementatiorto beatto justify its inclusionas
a first-classprimitive, which can be done by

addingnew valid “op” values.A comparision
with theintegratedapproachchoserby ulocks
is providedin Section4.

3.1.3 Problemswith the2.5.7 Implementa-
tion

Once the first implementation entered the
mainstreamexperimentalkernel, it drew the
attentionof a much wider audience. In par
ticular those concernedwith implementing
POSIX(tm§ threads, and attention also re-
turnedto thefairnesgssue.

» Thereis no straightforvardway to imple-
mentthe pthread_cond_timedait primi-
tive: this operatiorrequiresa timeout,but
usingatimeris difficult asthesemustnot
interferewith their useby arny othercode.

» Thepthread_cond_broadcasimitivere-
quiresevery processleepingo bewoken
up, which doesnotfit well with the2.5.7
implementationywherea procesonly ex-
its thekernelwhenthefutex hasbeensuc-
cessfullyobtainedor a signalis receved.

» For N:M threadingsuchasthe Next Gen-
erationPosixThreadgproject[5] anasyn-
chronousinterface for finding out about
the futex is required,sincea single pro-
cess(containingmultiple threads)might
beinterestedn morethanonefutex.

» Stanation occursin the following situta-
tion: a singleprocessvhich immediately
dropsandthenimmediatelycompetedor
the lock will regain it beforeary woken
processwill.

With these limitations brought to light, we
searchedor anotherdesignwhich would be
flexible empough to cater for these diverse
needs. After variousimplemenationattempts
and discussionswe setled on a variation
of atomic_compag_and_swajprimitive, with

5POSIXis atrademarlof the IEEE Inc.
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the atomicity guaranteedoy passingthe ex-
pectedvalueinto thekernelfor checking.? To
dothis,two new “op” valuesreplacedheoper
ationsabove, andthe systemcall waschanged
to two additional aguments, “int val” and
“structtimespectreltime”.

FUTEX_WAIT: Similar to the previous FU-
TEX_DOWN, exceptthattheloopingand
manipulation of the counteris left to
userspaceThis worksasfollows:

1. Settheprocesstateto INTERRJIPT-
IBLE, and place “struct futex_g”
into thehashtableasbefore.

2. Mapthepageinto low memory(if in
high memory).

3. Readthefutex value.

4. Unmapthe page(if mappedat step
2).

5. If the value read at step 3 is not
equalto the“val” agumentprovided

to the systemcall, setthe returnto
EWOULDBLOCK

6. Otherwise,sleepfor the time indi-
catedby the “reltime” argument,or
indefinitelyif thatis NULL.

(a) If we timed out, setthe return
valueto ETIMEDOUT

(b) Otherwise,if thereis a signal
pending,setthe returnvalueto

EINTR.
7. Try to remove our “struct
futex_q 7 from the hashtable: if

we were already removed, return
0 (successunconditionally as this
meansve werewokenup, otherwise
return the error code specified
above.

FUTEX_WAKE: Thisis similarto the previ-
ous FUTEX_UP, exceptthatit doesnot

alterthe futex value,it simplewakesone
(or more) processesThe numberof pro-
cessedo wake is cortrolled by the “int
val” parameterand the return value for
the systemcall is the number of pro-
cessexactuallywokenandremoved from
thehashtable.

FUTEX_AWAIT: This is proposedas an
asynchronousperationto notify the pro-
cessvia a SIGIO-stylemechanismwhen
the valuechanges.The exact methodhas
not yet beensettled (seefuture work in
Sectionb).

This new primitive is only slightly slower than

the previous one? in that the time between
waking the processand that processattempt-
ing to claimthelock hasincreasedasthelock

claim is donein userspacen returnfrom the

FUTEX_WAKE syscall), and if the process
hasto attemptthe lock multiple times before
successeachattemptwill be accompaniedby

a syscall, ratherthan the syscallclaiming the

lock itself.

Ontheotherhand,thefollowing canbeimple-
mentedentirelyin theuserspacébrary:

1. All the POSIX style locks, includ-
ing pthread_cond_broadcasivhich re-
quires the “wake all” operation) and
pthread_cond_timedait (which requires
the timeout argument). One of the au-
thors (Rusty) has implementeda “non-
pthreads” demonstrationlibrary which
doesexactly this.

2. Read-writelocksin a singleword, on ar-
chitectureswhich supportcmpxchg-style
primitives.

6About 1.5% on a low-contentiontdbtorture,3.5%
on a high-contentiortdbtortue
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3. FIFO wakeup, where fairnessis guaran-
teedto anyonewaiting (see3.1.4).

Finally, it is worthwhile pointing out that
thekernelimplementatiorrequiresexactly the
samenumberof lines as the previous imple-
mentation:233.

3.1.4 FIFO Queueing

Thenaive implementatiorof “up” doesthefol-
lowing:

1. Atomically setthefutex to 1 (“available”)
andrecordthe previousvalue.

2. If thepreviousvaluewasnegative, invoke
sys_fute to wake up awaiter.

Now, thereis the potentialfor anotherprocess
to claim the futex (without enteringthe kernel
atall) betweerthesewo stepstheprocesso-
kenatstep2 will thenfail, andgobackto sleep.
As long asthis doesnot leadto stanation, this
unfairnessis usually tolerable,given the per
formanceimprovementsshowvn in Section4

Thereis one particularcasewhere stanation
is a real problemwhich mustbe avoided. A

processwhichis holdingthelock for extended
periods and wishesto “give way” if others
are waiting cannotsimple to “futex_up(); fu-

tex_down();”, asit will alwayswin the lock
backbeforeary otherprocesses.

Henceone of us (Hubertus)addedthe con-
ceptof “futex_up_fair() ", wherethefu-
tex is set to an extremely negative number
(“passed”), insteadof 1 (“available™). This
looks like a “contended” case to the fast
userspacéfutex_down()” path,asit is nega-
tive, but indicatesto ary processafter a suc-
cessfulreturnfrom the FUTEX_WAITcall that

the futex hasbeenpassedlirectly, andno fur-
theraction(otherthanresettinghevalueto -1)
is requiredto claimit.

4 Performance Evaluation

In this sectionwe assesghe performanceof
thecurrentimplementationWe startoutwith a
syntheticbenchmarlandcortinue with amod-
ified databasdéenchmark.

41 MicroBenchmark: UlockFlex

Ulockflex is a syntheticbenchmarkdesigned
to ensuretheintegrity andmeasurehe perfor
manceof locking primitives. In arun, Ulock-
flex allocatesa finite set (typically one) of
globalsharedegions(shmator mmap’edfiles)
and a specifiednumberof userlocks which
are assignedo the sharedregion in a round
robin fashion. It thenclonesa specifiednum-
ber of taskseither asthreadsor as processes
andassigrs eachtaskto oneparticularlock in
a round robin fashion. Eachclonedtask, in
a tight loop, computestwo randomnumbers
nlht andlht, acquiresits assignedock, does
somework of lock hold time [ht, releaseshe
lock, doessomemore work of non-lock hold
time nlht andrepeatsheloop. Themeanlock
hold time (ht(mean) andnon-lockhold times
nlht(mean) areinputparameterslht andnlht
aredeterminedasrandomnumbersover a uni-
form distribution in the interval [0.5..1.5] of
their respectre mean. The tool reportstotal
cummulatve throughput(asin numberof iter-
ationsthroughtheloop). It alsoreportsthe co-
efficient of varianceof the pertaskthrougput.
A highercoeficient indicatesthe potentialfor
stanation. A small coeficient indicatesfair-
nessovertheperiodof execution.A datastruc-
ture associatedvith eachlock is updatedafter
obtainingthelock andverifiedbeforereleasing
thelock, thusallowing for integrity checks.
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In the following we evaluatethe performance
of various user locking primitives that were
built on the basics of the futex and the
ulock implementations. We considerthe ba-
sic two wakeup policies for both futexes
and ulocks, i.e. fair wakeup and regular
wakeup (i.e. cornvoy avoidance), yielding
the 4 casesfutex_fair, futex, ulodks_fair and
ulocks For thesecaseswe also considera
spinninglock acquisitionin thatthe tasktries
to acquirethe lock for 3 usecs before giv-
ing up and blocking in the kernel, yielding
the 4 casef futex_fair(spin,3),futex(spin,3),
ulodcks_fair(spin,3) and ulocks(spin,3) For
referencewe also provide the measurements
for a locking mechanismbuild on SystemV
semaphores,e., eachlock requestresultsin
a systemcall. This variantis denotedassysy
resultingin 9 overall locking primitives being
evaluated.

All experimentswere performedon a dual
Pentium-111500 MHz, 256 MB system.A data
pointwasobtainedoy runningulockflex for 10
secondswith a minimumof 10 runsor until a
95% confidencenterval wasachieved.

In the first experimentwe determinethe basic
overheadof the locking mechanims.For this
we run with onetask,onelock andnlht ==

lht == 0. Notethatin this caseall userlock-

ing mechanismsever have to enterinto the
kernel.Performancés reportedas% efficiency

of arunwithoutlockinvocations.Thesyswvas
25.1%efficient, while all 8 userlevel locking
casedell within 84.6%and87.9%. Whenthe
(nlht+[ht) wasincreasedo 10usecs, theeffi-

ciengy of syswvasstill only 82.2% while those
of the userlevel locks rangedfrom 98.9%to

99.1%.

Whenexecutingthis setupwith two tasksand
two lockstheefficiengy of syswdropsto 18.3%
from 25.1% indicating a hot lock in the ker
nel. At the sametime the userlevel primitives

all remainin thesamerange,asexpected.The
sameeffect canbe describedasfollows. With
this setupwe would expecttwice the through-
put performanceas comparedo the 1 task, 1
lock setup. Indeed,for all userprimitivesthe
scalabilityobsenredis betweenl.99and2.02,
while sysvonly showvs a scalabilityof 1.51.

In the next setof experimentswe fixedtheto-
tal loop executiontime nlht 4 [ht to 10usecs,
however we changedthe individual compo-
nents. Let (nlht,lht) denotea configuration.
Four configurationare obsened: (0,10),(5,5),
(7,3), (9,1). The (0,10) representshe highly
contendedcase,while (9,1) representsa sig-
nificantly lesscontendedase.The exactcon-
tentionis determinedby the numberof tasks
accessinga sharedlock. Contentionnum-
bersreportedare all measuredigainstthe fair
locking version of ulocksin a separaterun.
The contentionmeasurementoesnot intro-
duceary significantoverhead.

Figures1..5 shav the comparisionof the 9
locking primitives for the four configurations
under various task counts (2,3,4,100,1000).
Thepercentagénprovementgor eachconfig-
urationandtaskcountover the sysvbasenum-
ber for that configurationare reportedin Ta-
ble 1 for thefair futexesandulockswithoutand
with spinning(3 psecs) andin Table2 for the
regularfutexesandulocks.

The overall qualitatve asseswert of the re-
sults presentedn thesefigures and tablesis
as follows. First comparingthe fair locking
mechanismsfair ulocks, in general,have an
advantageover fair futexes. Furthermorefair
futexesperformworsethansysvfor high con-
tentionscenarios.Only in the high taskcount
numbersdo fair futexes outperform(substan-
tially) sysvand fair ulocks. Spinning only
shaoved somedecentimprovementin the low
contentioncases,as expected. For the regu-
lar versiongca-locks) bothfutexesandulocks
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Figurel: Throughpufor variouslock typesfor
2 tasks,1 lock and4 configurations
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Figure2: Throughpufor variouslock typesfor
3 tasks,1 lock and4 configurations

alwaysoutperformthe sysvversion. The gen-
eraltendeny is for ulocksto achieve their per
formanceatthe(5,5) configurationwith lit-
tle additionalbenefits. Thoughfutexesin gen-
erallack the ulock performanceat the (5,5)
configuration,they outperformulocks at the
(7.3) andthe(9,1) configurationsin con-
trastto futexes, spinningfor ulocks doesnot
help.

Figurel shaws theresultsfor 2 taskscompet-

ing for 1 lock underfour contentionscenarios.

The lock contentionfor the 4 configurations
were 100%, 97.8%, 41.7%and 13.1% The
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Figure3: Throughpufor variouslock typesfor
4 tasks,1 lock and4 configurations
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Figure4: Throughpufor variouslock typesfor
100tasks,1 lock and4 configurations

lock contentionobsenred for Figure2.. 5 are
all abore 99.8%.

We now turn our attention to the multiple
reader/singlewriter (rwlock) lock primitives.
To recall, furwocks implement the rwlock
functionality ontop of two regular futexes,
while ulocksimplementthemdirectlyin thein-
terfacethroughatomiccompareandexchange
manipulationof the lock word. Ulockflex al-
lows the specificatiorof ashare-level for
rwlocks. This translatesnto the probability of
ataskrequestingareadlock insteadof a write
lock while iteratingthroughthetight loop.
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Figure5: Throughpufor variouslock typesfor
1000tasks,1 lock and4 configurations
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Figure6: Throughputof furwocksandshared
ulocks for (2,3,4,100)tasks competingfor a

singlelock underdifferentreadshareratios

Figure6 shavs theachiezedthroughputof fur-

wocks and sharedulocks for 2, 3, 4 and 100
taskscompetingfor a singlelock underdiffer-

entreadshareratios. The generalobsenation
is that the furwocks (solid lines) outperform
the ulocks (dashedlines) for their respectre

tasknumbers. In generalthe lower the share
level and/orthe higher the task numbersthe
betterthe improvementsthat can be achieved
with furwocks over sharedulocks. Only in

the 100% share-lgel (only readaccessesjlo
sharedulocksoutperformfurwocksby 2-3%.

We now analyzethe fairnessof the userlock-

ing. We monitor the global fairnessby com-
puting the coeficient of variancecoef of the
per task throughput. Note this shouldnot be
comparedwith the fair locking itself. The co-

eff of sysvis typically belov 0.01. Only the
1000taskcaseshaved a coef of 9.1, indicat-
ing that tasksdid not all properly get started.
The coef for fair futexes and fair ulocks for

small task numbers( 2,3,4) is in generalbe-
low 0.01 (asexpected).For large tasknumber
(100,1000) the coef remainsvery low for fu-

texes, while ulocksexperiencea coef ashigh

as 1.10. For furwocks, the generalobsena-

tion is that the coef is lessthan0.16in both
furwocksandsharedulocks. Only for the 100
taskcasedoesthecoef reach0.45.Overallthe
meanof coef for all scenarioss 0.068for fur-

wocksand0.054for sharedulocks. In general
we can statethat at theselevel of contention,
globalstanationis nota problem.

We now turn our attentionto the degreeof lo-

cal fairnessfor the ca-locks. We do this by

investigating how mary times a taskis capa-
ble of reacquiringthe lock beforesomeother
tasklocksit. To doso,we examineahigh con-
tentioncaseof 100 tasksandthe (9,1) config-
uration. The kernellock andthe fair futexes
shoved perfectfairness,99.99% of the task
couldneverreacquirdts lock without losingit

to someothertask. Thefair ulocksonly 92.1%
failedto reacquire 3.6% wasableto grabthe
lock twice in arow and0.4%threetimes. The
maximumtimes a lock was able to be reac-
quiredwas1034times. For futexesthesenum-
bersare 79.0%, 21.0% and maximumof 575
and for ulocks they are 82.4%, 17.54% and
maximumof 751. To somedegreeit confirms
that futexes and ulocks have a higher degree
of instantreacquisition however this analysis
fails to shedmorelight on why futexesareso
muchbetterthanulocks.
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4.2 TDB Torture Results

The Trivial DataBasd€TDB) is a simplehash-
chain-basedn-diskdatabasesedoy SAMBA
and other projectsto store persistentinternal
data. It hasa similar interface to the clas-
sic dbm library, but allows multiple readers
and writers and is lessthan 2000 lines long.
TDB normally usesfcntl locks: we replaced
thesewith futex locksin a specialpart of the
memory-mappedile. We also examinedan
implementatiorusing "spin thenyield" locks,
which try to get the lock 1000 times before
callingyield() to let otherprocesseschedule.

tdbtorture is one of the standardtest pro-
gramswhich comeswith TDB: we simplified
it to eliminate the cleanuptraversalwhich it
normally performs,resultingin a benchmark
which forks 6 processeseachof which does
200000randomsearch/add/delete/trarseop-
erations.

To examine behaior under high contention,
we createda databasewith only one hash
chain,giving only two locks (thereis onelock
for the free recordschain). For the low con-
tentioncasewe used4096chains(thereis still

somecontenton on the allocationlock). For
the no contentioncase,we useda single pro-
cess,ratherthan6. The resultsshovn in Ta-
ble 3 wereobtainedon a 2-processoB50MHz
Pentiumll.

It is interestingthatthe fcntl locks have differ-

entscalingpropertiesthanfutexes: they actu-
ally do muchworseunderthe low contention
case possiblybecaus¢he numberof locksthe
kernelhasto keeptrackof increases.

Anotherpointto make hereis the simplicity of
the transformationfrom fcntl locks to futexes
within TDB: the modificationtook no longer
thanfive minutesto someondamiliar with the
code.

5 Current and Future Directions

Currently we are evaluatingan asynchronous
wait extensionto the futex subsystemThere-
quirementfor this arisesfor the necessityto
supportglobal POSIXmutexesin threadpack-
ages. In particular we are working with the
NGPT (next generatiornpthreads)Yeamto de-
rive specificrequirementdor building global
POSIX mutexes over futexes. Doing so pro-
videsthe benefitthatin the uncontendeaase,
no kernelinteractionsare required. However,
NGPTsupportsaa M : N threadingmodel,i.e.,
M userlevel threadsareexecutedover NV tasks.
Conceptuallythe N tasksprovide virtual pro-
cessorson which the M userthreadsare exe-
cuting.

Whena userlevel thread,executingon one of
these N tasks,needsto block on a futex, it
shouldnot block the task,asthis taskprovides
the virtual processing. Insteadonly the user
thread should be descheduledby the thread
managerof the NGPT system. Nevertheless,
awaitobj mustbeattachedo thewaitqueue
in the kernel, indicating that a userthreadis
waiting on a particularfutex andthat the task
group needsa notificationwrt to the continu-
ation on that futex. Oncethe threadmanager
recevesthe notificationit canreschedulghe
previously blockeduserthread.

For this we provide an additional operator
AFUTEX_WAITto the sys _futex  system
call. Its taskis to appenda waitobj to the
futex’s kernelwaitqueueand continue. Com-
paredto the synchronous calls describedin
Section3, thiswaitobj cannot beallocated
on the stackandmustbe allocatedanddeallo-
cateddynamicaly. Dynamicallocationshave
the disadwantagethatthe waitobjs  mustbe
freedevenduringanirregular programexit. It
furtherposesadenialof serviceattackthreatin
that a malicious applicationscan continously
call sys_futex(AFUTEX_WAIT) . We are
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contemplatingvarious solutionsto this prob-
lem.

The generalsolutionsseemto cornvert to the
usageof a/dev/futex deviceto controlresource
consumption. The first solution is to allo-
cate a file descriptorfd from the /dev/futex
“device” for each outstandingasynchronous
waitobj Corveniently these descriptors
shouldbe“pooled” to avoid the constanbpen-
ing and closing of the device. The private
dataof thefile would simply bethewaitobj
Uponcompletiona SIGIO is sentto the appli-
cation. The adwantageof this approachs that
the denialof serviceattackis naturallylimited
to thefile limits imposedonaprocessFurther
more, on programdeath,all waitobjs  still
enqueuedanbe easiyy dequeued.The disad-
vantageis that this approachcansignificantly
pollute the “fd’ space. Another solution pro-
posedhasbeento openonly onefd, but allow
multiplewaitobj  allocationdor thisfd. This
approachremovesthe fd spacepollution issue
but requiresanaddtional tuning parametefor
how mary outstandingwvaitobjs  shouldbe
allowedperfd. It alsorequiresproperresource
managemenof the waitobjs  in the kernel.
At this point no definite decisionshas been
reachedn which directionto proceed.

The questionof priorities in futexes hasbeen
raised: the currentimplementationis strictly
FIFO ordet The useof nice level is almost
certainlytoo restrictve, so someotherpriority
methodwould berequired.Expandinghesys-
temcall to adda priority argumentis possible,
if thereweredemonstrate@pplicationadwan-
tage.

6 Conclusion

In this paperwe describedafastuserlevel lock-
ing mechanism alled futexes that were in-
tegratedinto the Linux 2.5 developmentker-

nel. We outlinedthe variousrequirementdor
sucha packagedescribedreviousvariousso-
lutions and the currentfutex package.In the
performancesectionwe shaved, that futexes
can provide significant performanceadwan-
tagesover standardsystemV IPC semaphores
in all casesstudies.
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Conf no-spin spin
futex | ulock futex | ulock
2 tasks
(0,10) 8.8 7.6 9.3 7.8

(5,5) 17.7| 127.8 86.0| 108.2
(7,3) 33.2 60.1 68.5 55.7
9,1) 40.8 30.9 44.9 29.3
3tasks
(0,10) 43.2 9.0 38.5 9.3
(5,5) 49.1| 116.0 89.9 76.5
(7,3) 35.0 38.0 58.0 28.1
(9,2) 39.5 12.8 43.3 12.3
4 tasks
(0,10) 61.2 38.8 59.7 33.7
(5,5) 66.6| 130.5 116.3 90.5
(7,3) 34.7 29.9 49.1 20.3
(9,1) 36.1 10.5 39.6 6.2
100tasks
(0,10) 456.8| 397.1 426.9| 399.7
(5,5) 852.3| 1030.2 973.4| 8445
(7,3) | 1040.4| 1003.9| 1175.2| 9195
(9,1) | 1223.7| 967.7| 1260.4| 936.5
1000tasks
(0,10)| 4591.7| 4047.9| 3333.1| 4055.2
(5,5) | 6989.5| 9570.0 8583.8| 8095.9
(7,3) | 9149.7| 9427.1| 10781.5| 8714.6
(9,1) | 11569.6| 9437.7| 11869.9| 9223.3

Table 2: Percentagemprovementof regular
(ca)locking (spinningandnon-spinning)over
the basesysvthroughput

Locktype ContentionLevel

High Low | None
FCNTL | 1003.69| 1482.08| 76.4
SPIN 751.18| 431.42| 67.6
FUTEX 593.00| 111.45| 415

Table3: Completiontimes(secs)of tdbtorture
runswith differentcontentionratesanddiffer-
entlock implementations



