CIS 068

Assignment 01-S2002

Related Backup Reading

How Bytes and Bits Work

(submitted by Rocco Vernacchio, CIS 083, Fall 98)

(see reference at end of document)

If you have used a computer for more than five minutes, then you have heard the words bits and bytes. Both RAM and hard disk capacities are measured in bytes. So are file sizes when you examine them in a file viewer. For example, you might hear an advertisement that says "This computer has a 32-bit Pentium processor with 64 megabytes of RAM and 2.1 gigabytes of hard disk space." Many of the pages in How Stuff Works also talk about bytes (for example, the page on CDs). In this edition of How Stuff Works we will discuss bits and bytes so that you have a complete understanding.

Decimal Numbers

The easiest way to understand bits is to compare them to something you know: digits. A digit is a single place that can hold numerical values between 0 and 9. Digits are normally combined together in groups to create larger numbers. For example, 6357 has 4 digits. It is understood that in the number 6357 that the 7 is filling the "1s place", while the 5 is filling the 10s place, the 3 is filling the 100s place and the 6 is filling the 1000s place. So you could express things this way if you wanted to be explicit:

 (6 * 1000) + (3 * 100) + (5 * 10) + (7 * 1) = 6000 + 300 + 50 + 7 = 6357

Another way to express it would be to use powers of 10. Assuming that we are going to represent the concept of "raised to the power of" with the "^" symbol (so "10 squared" is written as "10^2"), another way to express it is like this:

 (6 * 10^3) + (3 * 10^2) + (5 * 10^1) + (7 * 10^0) = 6000 + 300 + 50 + 7 = 6357

What you can see from this expression is that each digit is a placeholder for the next higher power of 10, starting in the first digit with 10 raised to the power of zero.

That should all feel comfortable - we all work with decimal digits every day and have no problems. The neat thing about number systems is that there is nothing that forces you to have 10 different values in a digit. Our "base-10" number system likely grew up because we have 10 fingers, but if we happened to evolve to have 8 fingers instead we would probably have a base-8 number system. You can have base-anything numbers systems. In fact, there are lots of good reasons to use different bases in different situations.

Bits

Computers happen to operate using the base-2 number system, also known as the binary number system (just like the base-10 number system is known as the decimal number system). The reason computers use the base-2 system is because it makes it a lot easier to implement them with current electronic technology. You could wire up and build computers that operate in base-10, but they would be fiendishly expensive right now. On the other hand, base-2 computers are dirt cheap.

So computers use binary numbers, and therefore use binary digits in place of decimal digits. The word bit is a shortening of the words "Binary digIT". Where decimal digits have 10 possible values ranging from 0 to 9, bits have only 2 possible values: 0 and 1. Therefore a binary number is composed of only 0s and 1s, like this: 1011. How do you figure out what the value of the binary number 1011 is? You do it in the same way we did it above for 6357, but you use a base of 2 instead of a base of 10. So:

 (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (1 * 2^0) = 8 + 0 + 2 + 1 = 11

You can see that in binary numbers, each bit holds the value of increasing powers of 2. That makes counting in binary pretty easy. Starting at zero and going though 20, counting in decimal and binary looks like this

 0 = 0

 1 = 1

 2 = 10

 3 = 11

 4 = 100

 5 = 101

 6 = 110

 7 = 111

 8 = 1000

 9 = 1001

 10 = 1010

 11 = 1011

 12 = 1100

 13 = 1101

 14 = 1110

 15 = 1111

 16 = 10000

 17 = 10001

 18 = 10010

 19 = 10011

 20 = 10100

When you look at this sequence, 0 and 1 are the same for decimal and binary number systems. At the number 2 you see carrying first take place in the binary system. If a bit is 1, and you add 1 to it, the bit becomes zero and the next bit becomes 1. In the transition from 15 to 16 this effect roles over through 4 bits, turning 1111 into 10000.

Bytes

Bits are rarely seen alone in computers. They are almost always bundled together into 8-bit collections, and these collections are called bytes. Why are there 8 bits in a byte? A similar question is, "Why are there 12 eggs in a dozen?" The 8-bit byte is something that people settled on through trial and error over the past 50 years.

With 8 bits in a byte, you can represent 256 values ranging from 0 to 255, as shown here:

 0 = 00000000

 1 = 00000001

 2 = 00000010

 ...

 254 = 11111110

 255 = 11111111

A typical CD uses 2 bytes, or 16 bits, per sample. A two-byte or 16 bit representation gives each sample a range from 0 to 65,535, like this:

 0 = 0000000000000000

 1 = 0000000000000001

 2 = 0000000000000010

 ...

 65534 = 1111111111111110

 65535 = 1111111111111111

Bytes are frequently used to hold individual characters in a text document. In the ASCII character set, each binary value between 0 and 127 is given a specific character. Most computers extend the ASCII character set to use the full range of 256 characters available in a byte. The upper 128 characters handle special things like accented characters from common foreign languages.

The table at the right shows the 127 standard ASCII codes. Computers store text documents, both on disk and in memory, using these codes. For example, if you use Notepad in Windows 95 to create a text file containing the words, "Four score and seven years ago", Notepad would use one byte of memory per character. When Notepad stores the sentence in a file on disk, the file will contain one byte per character. Try this experiment: open up a new file in Notepad and insert the sentence, "Four score and seven years ago" in it. Save the file to disk under the name getty.txt. Then use the explorer and look at the size of the file. You will find that the file has a size of 30 bytes on disk: one byte for each character. If you add another word to the end of the sentence and re-save it, the file size will jump to the appropriate number of bytes. Each character consumes a byte.

If you were to look at the file as a computer looks at it, you would find that each byte contains not a letter but a number. The number is the ASCII code corresponding to the character. So on disk The numbers for the file look like this:

 F o u r a n d s e v e n

 070 111 117 114 032 097 110 100 032 115 101 118 101 110 032

By looking in an ASCII code table (which you can you can see a one-to-one correspondence between each character and the ASCII code used. Note the use of 32 for a space - 32 is the right ASCII code for a space. We could expand these decimal numbers out to binary numbers (so 32 = 00100000) if we wanted to be technically correct - that is how the computer really deals with things.

Lots of Bytes

When you start talking about lots of bytes, you get into prefixes like Kilo, Mega and Giga, as in Kilobyte, Megabyte and Gigabyte (also shortened to K, M and G, as in Kbytes, Mbytes and Gbytes or KB, MB and GB). The following table shows the multipliers:

 Name
Abbrev

 Size
 Kilo

 K

2^10 = 1,024

 Mega
 M

2^20 = 1,048,576

 Giga
 G

2^30 = 1,073,741,824

 Tera

 T

2^40 = 1,099,511,627,776

 Peta

 P

2^50 = 1,125,899,906,842,624

You can see in this chart that Kilo is about a thousand, mega is about a million, giga is about a billion, and so on. So when someone says "this computer has a 2 Gig hard drive", what he/she means is "2 gigabytes", which means approximately 2 billion bytes, and means actually 2,147,483,648 bytes. How could you possible need 2 gig of space? When you consider that one CD holds 650 meg, you can see that just 3 CDs worth of data will fill the whole thing! Terabyte database are fairly common these days, and there are probably a few petabyte databases floating around the Pentagon by now.

Binary Math

Binary math works just like decimal math, except that the value of each bit can be only 0 or 1. To get a feel for binary math, let's start with decimal addition and see how it works. Assume we want to add 452 and 751:

 452

 + 751

 1203

To add these 2 numbers together you start at the right. 2 + 1 = 3. No problem. 5 + 5 = 10, so you save the zero and carry the 1 over to the next place. 4 + 7 + 1 (because of the carry) = 12. You save the 2 and carry the 1. 0 + 0 + 1 = 1. So the answer is 1203.

Binary addition works exactly the same way:

 010

 + 111

 1001

Starting at the right, 0 + 1 = 1 for the first digit. No carrying there. 1 + 1 = 10 for the second digit, so save the 0 and carry the 1. 0 + 1 + 1 = 10 for the third digit. So save the zero and carry the 1. 0 + 0 + 1 = 1. So the answer is 1001. If you translate everything over to decimal you can see it is correct: 2 + 7 = 9.

To see how boolean addition is implemented using gates, see the How Stuff Works article on Boolean logic.

Recapping

So to recap:

 * We have bits, or binary digits. A bit can hold the value 0 or 1.

 * We have bytes, made up of 8 bits.

 * Binary math works just like decimal math, but each bit can have a value of only 0 or 1.

There really is nothing more to it - bits and bytes are that simple!

Reference:

How Stuff Works (http://www.howstuffworks.com) is a production of [BYG Publishing] BYG Publishing, Inc. http://www.bygpub.com - questions@bygpub.com (919) 269-5880 - P.O. Box 40492 - Raleigh, NC 27629.

(c) 1998 BYG Publishing, Inc. All rights reserved.

Assignment 1 – Backup Reading
08/27/01
Page 2

