Can We Teach Problem Solving, or Not?

Tracking via Example

[CIS 071 students: Please read this carefully.  We will be following a similar sequence of steps for algorithm development in the rest of this course, so it is important that you understand this material.]
Abstract  
Recently, I have been teaching an introductory programming course for non-majors, including many engineering students required to learn how to write programs using the C programming language.  The primary objective of this course is to teach problem solving.  A secondary goal is to teach students how to use functions to build the components of their software solutions, and how to implement these functions (which almost always requires using loops).  We try to answer the age-old challenge often posed by such students: “I don’t know where to begin in solving this problem.”  We build a view of the components required for a solution using a top-down, step-wise refinement approach.  We then apply a more bottom-up approach to build the outline of the algorithms needed to code each component.  We use two fairly common tools adapted to the needs of a first course: a Data Requirements Table (DRT), and a simplified form of a Software Behavior Diagram (SBD).  The focus of this paper is on the algorithm development phase of the problem solving task.  Our goal is to provide students with a concrete approach to designing looping algorithms and to show how these loops can be embedded in functions having arguments that relate to the variables used for loop control.

Introduction

The primary objective of this exercise is to teach problem solving.  A secondary goal is to teach students how to use functions to build the components of their software solutions, and finally, to implement these functions, most often, using loops.  Normally, we begin our discussions with the statement of a small problem.  We construct a solution, starting with a clean slate, as do most students in an introductory course.  We try to answer the age-old challenge often posed by such students: “I don’t know where to begin in solving this problem.”  We build a view of the components required for a solution using a top-down, step-wise refinement approach.  We then apply a more bottom-up approach to build the outline of the algorithms needed to code each component.  We use two fairly common tools adapted to the needs of a first course: a Data Requirements Table (DRT) and a simplified form of a Software Behavior Diagram (SBD).
The top-down methodology is intended to help students gain an overview of the steps needed to solve a problem.  In the process, they develop an initial picture of the software components required to solve a problem, and the major data stores and structures involved in the solution.  The bottom-up approach is used to help students learn how to program in the small – to develop algorithms for solving the problems posed by the smaller, more manageable components that emerge from the top-down analysis.

The focus of this discussion is on algorithm development. As a starting point for solving any problem, students are urged to choose an example, to write down everything they know about the example, and to draw a picture whenever appropriate.  Most small algorithms involve the use of loops.  Students are encouraged to begin the development of their loops  “at the beginning.”  We unravel the loop, writing down exactly what needs to be done in the first iteration, and then in subsequent iterations, all-the-while looking for repeatable patterns that can be expressed using lower level components.  References to these components are ultimately embedded within a repetition control structure using additional variables and additional algorithm steps, as needed, to control the variables that change as the loop repeats.
We want to ensure that students 

· learn how to develop their own algorithms using loops and loop parameters to take  fuller advantage of the power of repetition, 

· understand how to separate out sub-algorithms and “wrap” them in functions,

· begin to appreciate the interplay between functions and loops and the power of reuse of both by making the right choices in function arguments and function parameters.

A Problem

For the purpose of this discussion, we consider the problem of writing a set of one or more functions to display an isosceles triangle (IsosTri) of width w (the width of the base).  

         *

       * * *

     * * * * *

   * * * * * * *

We use a data table and series of behavior diagrams, developed in a top-down manner, in our attempt to teach students some problem solving skills.  Naming variables as the need for them is recognized is also emphasized.  Describing the use of these variables id stressed as critical to the problem solving exercise.





The variable w is the first one to be entered into our data table:

Data Table for Draw Triangle Problem

Input

w – (int) specifies the width of the base of the triangle
We can refine the primary step (1) by decomposing it into 4 steps (1.1, 1.2 … 1.4)




The text in green was added later to lend as much in the way of specific details as possible to the description of each of the lines to be drawn.

Now we should begin looking for patterns, noting simply that these steps are all the same except that the number of leading blanks being displayed (nlb) is decreasing by 1 and the number of stars (nstars) being displayed is increasing by 2.  We now add this information to our data table: 

Data Table for Draw Triangle Problem (to be turned in to a function with one argument, w)
Input

w – (int) specifies the height of the triangle

Output (none as yet)

Other variables
nlb = {3, 2, 1, 0} – (int) used to keep track of the number of leading blanks to be displayed

     in one line

nstars = {1, 3, 5, 7} – (int) used to keep track of the number of stars to be displayed (after

     the blanks) in one line

Next, let’s see if we can write-out the algorithm for one step, say Step 1.2

1.2.1 display nlb=2 blanks on the same line

1.2.2 display nstars = 3 stars on the same line (right after the blanks)

1.2.3 display ‘\n’ on this same line

Now what I want to do is repeat these steps 4 times changing only what really needs to be changed.  Let’s try to expand out this sequence to see if we can find a pattern.

1.2.1 display nlb=3 blanks on the same line

1.2.2 display nstars = 1 star on the same line (right after the blanks)

1.2.3 display an end of line on this same line

1.2.1 display nlb=2 blanks on the same line

1.2.2 display nstars = 3 stars on the same line (right after the blanks)

1.2.3 display an end of line on this same line

1.2.1 display nlb=1 blank on the same line

1.2.2 display nstars = 5 stars on the same line (right after the blanks)

1.2.3 display an end of line on this same line

1.2.1 display nlb=0 blanks on the same line

1.2.2 display nstars = 7 stars on the same line (right after the blanks)

1.2.3 display an end of line on this same line

Next, we try to rewrite the above sequence as a loop, using the variables in our data table.

We define a new variable h = (w+1)/2, the height of a triangle of base width w, and note that

as so defined, h can be used whether w is odd or even.
int i;

int h;

h = (w+1)/2;

for (i = 1; i <= h; i++)    
{

display nlb blanks on the same line

display nstars stars on the same line (right after the blanks)

display an end of line on this same line

}

Now we have to deal with ensuring that the values for nlb and nstars and correct at each repletion of the loop.  Let’s see how this works.

nlb = w – 1;
    
nstars = 1;
int i;

for (i = 1; i <= h; i++)

{

          display nlb blanks on the same line

display nstars stars on the same line (right after the blanks)

display an end of line on this same line

decrement nlb (by one)

add 2 to nstars

}

What’s left?  Figuring out how to display some number n characters ch on one line?

To do this, we write a separate function, displayNchars.  The prototype for this function is shown below.
   // Display n characters ch in a single line

   void displayNchars

      (int n,       // IN: number of characters to be displayed

       char ch);    // IN: the actual character to be displayed

Using this function, I can now write a C function for the above algorithm.

   // Function to display an isosceles triangle (IsosTri) 
   // The width of the base of the triangle is given as w

   // w must be odd

   void displayIsosTri 

      (int w)      // IN: width of the base of the triangle
   { 
      int h;       // height of triangle

      int nlb;     // keeps track of number of leading blanks per line

      int nstars;  // keeps track of number of stars needed per line

      nlb = w/2;   // number of leading blanks needed on top line
      nstars = 1;

      h = (w+1)/2;

      int i;       // loop control variable 

      for (i = 1; i <= h; i+=1)

      {

          // display nlb blanks on the same line

          displayNchars (nlb, ‘ ‘);

          // display nstars stars on the same line (after the blanks)

          displayNchars (nstars, ‘*’);

          // display end of line on this same line (students need to write)
          // decrement nlb (by one) and increment nstars by 2
          nlb -= 1;

          nstars += 2;

       }  // end for         

  }

THIS HAS NOT BEEN TESTED – BUYER BEWARE.

Start





Stop





Draw an isosceles triangle with a base width w (w must be odd and at least equal to 3)





Draw the top line of the triangle (with 3 blanks and 1 star)





Draw the 2nd line of the triangle (with 2 blanks and 3 stars)





Draw the 3rd line of the triangle (with 1 blank and 5 stars) 





Draw the 4th line of the triangle (with 0  blanks and 7 stars)





1 used to keep track of the number of leading blanks to be displayed in one line


.2





1.3





1.4





1.1





1.2








