Lecture Set 4 – Selection Structures

Required Reading – HK (Hanly/Koffman), Chapter 4

 (Skip Section 4.6, the Water Bill with Conservation Case Study)

The next two Chapters (4 and 5) … what’s this all about?

It’s about patterns in programming. We discussed this early in the course.

We examined the ATM example and found sequences, decisions, and repetitions embedded in our analysis of the required behavior of the ATM software system.

Until now, our focus has been on sequences, and features of the C language useful in

programming sequences.

In Chapters 4 and 5, we examine the other two primary patterns of programming – decisions and loops.

We will learn about several different forms of decision patterns and of loop patterns and about how and when to use these different patterns.

This is problem-solving … developing tools and recognizing when to use them.

We begin with decisions …

A. Decisions in programs

Example 1:

if (toupper(dchar) == ‘M’) then

 draw_Mfig();

else

 draw_Ffig();

How does this work – i.e., what does it do? We need to read it out loud!!

Once you can read this, you can read and understand almost everything in Chapter 4 of the book. (But of course, that is no excuse for not reading the Chapter. There is a lot of other information in there that you need to know.)

Decision structures

· Allow programs to follow different courses of action or execute different tasks depending on the data values

B. Psuedo-code examples of conditional statements and branching

Example 2: if x is not equal to zero then

 divide y by x

This is a single-alternative decision pattern.

It can be read as follows: If the condition "x is not equal to zero" is TRUE, divide the value of y by the value of x

Otherwise (else), the condition "x is not equal to zero" is FALSE. In this case, no alternative action is taken because no alternative actions have been specified if the statement is FALSE

 Example 3: if x is not equal to zero then

 divide y by x

 else // otherwise

 display an error message

This is a double-alternative decision pattern.

We read it as follows: If the condition "x is not equal to zero" is TRUE, divide the value of y by the value of x

Otherwise, the condition "x is not equal to zero" is FALSE. Display an error message.

Thus, the only possible values of the expression “x is not equal to 0” (or in C,

x != 0) are true or false.

What are the possible values for the integer expression

2 * k / (3 + m)

What are the possible values for the float expression

2.5 * x / (3.75 + w)

Example 4: if x is less than zero then

 set y equal to -1

 else if x is equal to zero then

 set y equal to 0

 else

 set y equal to 1

This is a multiple-alternative decision pattern.

We can read it as follows: If the condition "x is less than zero" is TRUE, set the value of y to -1

Otherwise, the condition "x is less than zero" is a FALSE. So if the condition "x is equal to zero" is TRUE, set the value of y to 0

Otherwise, the conditions "x is less than zero" AND "x is equal to zero" are both FALSE, so we set the value of y to 1 no matter what

C. Why use pseudo code at all?

The book also uses flow charts, which are sometimes handy for visualizing what is going on with a decision structure. However, pseudo-code, if properly indented and written with a little care is a preferred mechanism for mapping out the logic of a decision before trying to program it (and having to worry about syntax).

D. Revisiting Examples 2, 3, and 4 - pseudo-code => C

Example 2: if x is not equal to zero then

 divide y by x

if (x != 0)

 … = y / x;

 Example 3: if x is not equal to zero then

 divide y by x

 else // otherwise

 display an error message

if (x != 0)

 … = y / x;

else

 printf (“ … “);

 Example 4: if x is less than zero then

 set y equal to -1

 otherwise if x is equal to zero then

 set y equal to 0

 otherwise

 set y equal to 1

if (x < 0)

 y = -1;

else if (x == 0) // be careful with this equality operator

 y = 0;

else

 y = 1;

E. How Do These If Structures Work? (Or: How does the compiler translate them?)

When the first condition in an "if" control structure evaluates to TRUE the dependent statements for that part of the structure are executed. The rest of the statements in the "if" control structure are "skipped". The program execution continues with the first executable statement after the end of the "if" control structure.

1) When the "if" statement control structure has only ONE dependent statement then the curly braces { } are NOT required.

 if (condition)

 // Single dependent statement executed when the

 // condition evaluates to True

 dependent statement;

 However, it's ALWAYS a good idea to use braces { } even when they're not required.

 if (condition)

 {

 // Single dependent statement executed when the

 // condition evaluates to True

 dependent statement;

 }

 When the "if" statement control structure has multiple dependent statements then the

 curly braces { } ARE required.

 if (condition)

 {

 // Dependent statements executed when the

 // condition evaluates to TRUE

 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 } // end if

 2) Here are some other example forms of if statements …

The end of the "if" control structure is defined by the closing curly brace of the last "if", "else if" or "else" code block if the curly braces are used, or the last dependent statement in the last "if", "else if" or "else" code block if the curly braces are not used.

Single Alternative Decision Structure

 if (condition)

 {

 // Dependent statements executed when the

 // condition evaluates to TRUE
 dependent statement1;

 ...

 dependent statementN;

 } end if

 /* Closing curly brace of the "if” code block which

 is the end of the "if" control structure */

 next executable statement;

Double Alternative Decision Structure

 if (condition)

 {

 // Dependent statements executed when the

 // condition evaluates to TRUE
 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 }

 else

 {

 // Dependent statements executed when the

 // condition evaluates to FALSE

 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 } // end if

 /* Closing curly brace of the "else" code block

 which is the end of the "if" control structure */

 next executable statement;

Multiple Alternative Decision Structure

 if (condition)

 {

 // Dependent statements executed when the

 // condition evaluates to TRUE
 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 } // end of “TRUE” block

 else if (condition1)

 {

 // Dependent statements executed when condition is

 // FALSE and condition1 is TRUE

 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 }

 /* Closing curly brace of first "else if" code block */

 ...

 else if (conditionN)

 {

 /* Dependent statements executed when condition, and

 condition1 through condition(n-1) all evaluate to

 FALSE and conditionN evaluates to TRUE

 */

 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 }

 /* Closing curly brace of last "else if" code block */

 else

 {

 /* Dependent statements executed when ALL previous

 conditions evaluate to FALSE

 */

 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 } end if

 /* Closing curly brace of the "else" code block which

 is the end of the "if" control structure */

 next executable statement;

3)
Note that in the above forms, anyone or more of the dependent statements are often just a single dependent statement (in which case the braces MAY be omitted).

 4) Some coding examples:

 a.) if (x > y)

 {

temp = x;

x = y;

y = temp;

 }

 How can we figure out what this does? Hand trace? What about this:

 b.) if (age >= 65)

 printf ("Older than 65 year old male or female\n");

 else if (age >= 18 && age <= 21)

 if (gender == 'M' || gender == 'm') // the OR operator

 printf ("18 to 21 year old male\n");

 else

 printf ("18 to 21 year old female\n");

 else if (age < 16)
 printf ("Younger than 16 year old male or female\n");

 // end if

 printf ("Done with the if statement\n")
5) General form of a logical expression:

 (expression relational_operator expression)

 where

 "expression" is a variable, function that returns a value, constant,

 logical or mathematical expression or “any combination thereof”

 "relational_operator" is a comparison symbol showing a relationship
 between the two expressions:

Symbol Relationship between expressions Example

 ------ -------------------------------- -------

 < exp1 is LESS THAN exp2 (exp1 < exp2)

 <= exp1 is LESS THAN OR EQUAL TO exp2 (exp1 <= exp2)

 > exp1 is GREATER THAN exp2 (exp1 > exp2)

 >= exp1 is GREATER THAN OR EQUAL TO exp2 (exp1 >= exp2)

 == exp1 is EQUAL TO exp2 (exp1 == exp2)

 != exp1 is NOT EQUAL TO exp2 (exp1 != exp2)

The Relational Operators are binary operators that require two pieces of information, called operands, to operate on. Relational Operators determine the relationship between two pieces of data which is what makes them binary operators. Note that == and != are sometimes referred to as equality operators.

 There is one additional Logical Operator called the "NOT" operator

 that is used to reverse the result of evaluating an expression:

 Symbol Meaning Example

 --------- -- ----------

 ! Opposite result of an expression !exp1

 The NOT operator is a unary operator that requires one operand to operate on.

 The NOT operator is used to reverse the result of one expression.

 The result of using the NOT operator on an expression that evaluates

 to TRUE is read as NOT TRUE which is equal to FALSE. The result of

 using the NOT operator on an expression that evaluates to FALSE is

 read as NOT FALSE which is equal to TRUE.

 Examples:

a) x != y !(x = y)

b) x >=y !(x < y)

 c) (x <= y)

 d) (x != y + z)

 e) (m % n == 0)

 The NOT operator can be used to construct equivalent conditions in a

 more intuitive way. For example, the following two expressions are

 equivalent ways of checking whether the value of x is NOT LESS THAN

 the value of y:

 (x >= y) The value of x is GREATER THAN OR EQUAL TO the value of y

 This form of the condition requires you to understand that

 the value of x is NOT LESS THAN the value of y if the value

 of x is GREATER THAN OR EQUAL TO the value of y

 !(x < y) NOT the value of x is LESS THAN the value of y

 This form of the condition is more intuitive because you are

 checking directly to see if the value of x is LESS THAN the

 value of y and using the NOT operator to reverse the outcome

 which makes the expression equivalent to saying the value of

 x is NOT LESS THAN the value of y

6) Representation of logical or Boolean values in C –

 BEWARE, THIS DOG BYTES!
 All logical conditions will evaluate to one of two possible outcomes, either TRUE or

 FALSE. There is no such thing as both TRUE and FALSE, partially TRUE,

 somewhat FALSE, etc., there are only two possible outcomes from evaluating any

 logical condition, either TRUE or FALSE.

 The TRUE dependent statement(s) OR the FALSE dependent statement(s),

 if there are any, will be executed depending upon whether the logical

 condition evaluates to TRUE or FALSE.

This has some significant implications for us IF WE ARE SLOPPY!!!Let’s see what this implies by looking at examples.

Example 1:

int x = 0, y = 1;

if (x)

 printf ("x is TRUE\n");

else

 printf ("x is FALSE\n");

 The FALSE dependent statement:

 printf ("x is FALSE\n");

 will be executed and display the following:

 x is FALSE. Why?

Example 2:

int x = 0, y = 1;

if (!y)

 printf ("!y is TRUE\n");

else

 printf ("!y is FALSE\n");

 Here, the FALSE dependent statement:

 printf ("!y is FALSE\n");

 will be executed and display the following:

 !y is FALSE Why?

REMEMBER: C was developed primarily as a high-level systems language, intended actually for writing the Unix operating system. It was not intended as the general-purpose language it turned out to be. We are still living with some of the features of this original design goal.

Features in a language are (almost) impossible to get rid of once they have been included in the language.

Many features of a language are the way they are BECAUSE of the intended purpose of the language when it was designed.

However – we are not defenseless

What is this all about?

#define FALSE 0

#define TRUE 1

eofFlag = FALSE;

Finally – having said all this about C, … what can we say about FORTRAN? COBOL? SNOBOL? Pascal? C++? Java?

Now that this part of the sermon is over … let’s move on …

7) Joining two or more logical expressions

· Logical expressions can be "joined" together to form more complex expressions using the AND operator '&&' and the OR '||' operator

· The resulting joined expression is evaluated in much the same way that a mathmatical expression is evaluated and results in a single TRUE or FALSE value.

(logical_expression join_operator logical_expression)

 where

 logical_expression is an expression involving the relational operators <=, >=, ==, <, >, !=) It results in a TRUE (non-0) or FALSE (0) value.

 "join_operator" is a join operator (&&, or ||) showing a relationship between the two logical expressions:

 Symbol Name Meaning

 ------ -------- --

 && AND BOTH logical expressions MUST evaluate to TRUE in

 order for the overall expression to evaluate to TRUE

 || OR EITHER logical expression can evaluate to TRUE in

 order for the overall expression to evaluate to TRUE

· The Join Operators are binary operators that require two logical expressions called operands to operate on.

· The join operators are of lower precedence than the relational operators listed above in section 6, General form of a logical expression, which means that the relationship between two data items will always be evaluated before joining the result of the evaluation with another logical expression.

· The AND join operator '&&' is of higher precedence than the OR join operator '||' and, in the absence of superceding parenthesis, will be evaluated before the OR operator.

 For example, the expression 1 || 0 || 1 && 0 will NOT be evaluated

 in order from left to right because the AND operation is of higher

 precedence than the OR operations:

 Step 1: (1 || 0 || 1 && 0) - 1 && 0 evaluates to FALSE (0)

 Step 2: (1 || 0 || 0) - 1 || 0 evaluates to TRUE (1)

 Step 3: (1 || 0) - 1 || 0 evaluates to TRUE (1)

 Step 4: (1) - 1 is interpreted as TRUE

 The following matrix illustrates the results of joining two logical expressions using the AND '&&' operator:

 Logical Expression 1 Logical Expression 2

Result

T

T

 T

T

F

 F

F

T

 F

F

F

 F

 The following matrix illustrates the results of joining two logical

 expressions using the OR '||' operator:

 Logical Expression 1 Logical Expression 2

Result

T

T

 T

T

F

 T

F

T

 T

F

F

 F

 8) Coding Examples:

 Example 1:

 if (x == y)

 {

 printf ("x and y are equal\n");

 }

 else

 {

 printf ("x and y are NOT equal\n");

 }

 The condition (x == y) reads as "the value of x is EQUAL TO the value of y". This condition evaluates to TRUE if and only if x and y contain the same values.

Example 2:

 if (x + y > 4)

 {

 printf ("x + y is greater than 4\n");

 }

 else

 {

 printf ("x + y is NOT greater than 4\n");

 }

 The condition (x + y > 4) reads as "the result of adding the value

 of x to the value of y is GREATER THAN 4".

How would you read the condition (x + (y > 4)), and how would you describe the result?

How do we know the order of evaluation of expressions such as

 x + y > 4 x + y <= z*3 x + y && w + 3 != 16 * 2

Answer: We need to get familiar with the operator precedence chart.

 Example 3:

 if (x != 'D')

 {

 printf ("x is NOT equal to the character 'D'\n");

 }

 else

 {

 printf ("x is equal to the character 'D'\n");

 }

The condition (x != 'D') reads as "the value of x is NOT EQUAL TO the character 'D'". This condition evaluates to TRUE if the value of x is the character 'R' which is NOT EQUAL TO the character 'D'. Otherwise it evaluates to FALSE.

 Example 4:

(marital_status == ‘S’ && gender == ‘M’)

This expression evaluates to TRUE if the contents of marital_status is ‘S’ (for single) and if the contents of gender is ‘M’ (married). Otherwise it evaluates to FALSE. Note that if marital_status == S is FALSE (marital_status does not contain an S) the gender == ‘M’ evaluation will be short-circuited (not bothered with). Once we know that any part of a logical expression involving && is FALSE, the entire expression must be FALSE.

Example 5:

a. (!(marital_status == ‘S’ || gender == ‘M’))

b. !(!(marital_status == ‘S’) || !(gender == ‘M’))

One of these logical expressions is identical to the logical expression in Example 4.

Can you tell which one? How did you do it?

How do you know whether the operator || or ! is evaluated first?

Does it matter which is evaluated first? Justify your answer.

 8) The "switch" statement

 General form of the "switch" statement control structure:

 switch (expression)

 {

 case value1:

 /* Sequence of one or more dependent statements

 executed when the expression is equal value1

 */

 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 break;

 case value2:

 /* Sequence of one or more dependent statements

 executed when the expression is equal value2

 */

 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 break;
 case valueN:

 /* Sequence of one or more dependent statements

 executed when the expression is equal valueN

 */

 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 break;

 default:

 /* Sequence of one or more dependent statements

 executed when the expression none of the values

 value1, value2, … valueN is equal to the

 expression.

 */

 dependent statement1;

 dependent statement2;

 ...

 dependent statementN;

 break;

 }

 where

"expression" (called the controlling expression) can be any integer –valued or character-valued expression and the values (value1 … valueN) are integer or character values to which the expression is compared.

 The expression that you "switch" on must evaluate to either an integer

 OR a character value. The resulting value is compared to the value

 in each of the case statements until a matching case value is found.

 Once a matching case value has been found no more comparisons take

 place and the remaining case statements are in effect ignored. The

 the switch statement executes the appropriate dependent statements

 until the switch statement has finished executing.

Note that is a break statement is omitted at the end of any set of dependent statements, then all dependent statements following the first matching case statement are executed one after another until EITHER a

i) another break statement is reached or

 ii) the end of the switch statement is reached,

which ever comes first. The break causes the program execution to "break" out of the switch statement and transfer control to the first executable statement that occurs after the end of the switch statement. This causes the remainder of the switch statement to be skipped. The end of the switch statement is defined as the closing curly brace on the switch statement.

 Example 1:

 int main()

 {
 char grade; // Hold a letter grade entered by a user

 /* Get the letter grade from the user */

 printf ("Enter the student's grade > ");

 scanf ("%c", &grade);

 /* Display the appropriate message by "switch"ing on the

 /* letter grade entered by the user

 /* Compare the value of the variable grade to the each

 of the cases until it matches a case. Once you have

 matched a case, no other attempts are made to match

 any more cases. At this point, the computer executes

 the dependent statements for the matched case until

 a break is encountered or the end of the switch is

 encountered, which ever comes first.

 */

 switch (grade)

 {

 case 'A': // if grade matches case 'A', continue here

 case 'a' // if grade matches case 'A', continue here

 printf ("%c = Excellent\n", grade);

 break;

 case 'B': // if grade matches case 'B', continue here

 case 'b': // if grade matches case ‘b’, continue here

 printf ("%c = Good\n", grade);

 break;
 case 'C': // if grade matches case 'C', continue here

 case 'c': // if grade matches case ‘c’, continue here

 printf ("%c = Average\n", grade);

 break;
 case 'D': // if grade matches case 'D', continue here

 case 'd': // if grade matches case 'd', continue here

 printf ("%c = Below Average\n", grade);

 break;
 case 'F': // if grade matches case 'F', continue here

 case 'f': // if grade matches case 'f', continue here

 printf ("%c = Failing\n", grade);

 break;
 default:

 /* The only way to reach here is if grade did NOT

 match any of the cases 'A', 'a', 'B', 'b',

 'C', 'c', 'D', 'd', 'F' or 'f'.

 */

 printf ("Invalid grade entered - %c\n", grade);

 } // end of switch

 return (0);

 ;

Example 2:

 int main()

 {
 char color; // contains color entered by user

 // Get the color from the user as a capital letter

 printf ("Enter the color > ");

 scanf ("%c", &color);

/* Display the appropriate message by "switch"ing on the color entered by the user. Compare the value of the variable color to the each of the cases until you match a case. until it matches a case. Once you have matched a case, no other attempts are made to match any more cases. At this point, the computer executes the dependent statements for the matched case until a break is encountered or the end of the switch is encountered, which ever comes first.

*/

 switch (color)

 {

 case 'R':

 printf ("%c = Red\n", color);

 case 'G':

 printf ("%c = Green\n", color);

 case 'B':

 printf ("%c = Blue\n", color);

 break;

 case 'Y':

 printf ("%c = Yellow\n", color);

 break;

 case 'O':

 printf ("%c = Orange\n", color);

 case 'P':

 printf ("%c = Purple\n", color);

 default:

 /* The only way to reach here is if color did

 NOT match any of the cases 'R', 'G', 'B',

 ‘Y’, ‘O’, or ‘P’.
 */

 printf ("Invalid color entered - %c\n", color);

 } // end of switch

 return (0);

 ;

Note that we omitted break statement from the Red, Green, Orange and Purple cases.

Describe what will happen in the execution of this switch statement if the variable color is Red? What if the variable color is Orange?

What will happen if the user enters ‘V’ for violet?

The logical values TRUE and FALSE are represented in

by integer values. The integer value 0 represents the

logical value FALSE. Any non-zero integer value (any

integer value other than 0) represents the logical value TRUE.

The moral of the story here is not to memorize this table,

but to be aware that precedence is something to be kept in

mind when you write expressions. If you are not absolutely

sure what you will get as a result, either look up the operators

involved in the table or use parentheses.

 It's EXTREMELY important to remember that the dependent

 statements following the first matching case statement are

 executed until EITHER a break statement is encountered or the

 end of the switch statement has been reached. This means that if

 there are no break statements encountered, additional dependent

 statements will be executed that may belong to subsequent case

 statements. This is commonly referred to as "falling through" into

 the next case statement. This is not a problem if it is done intention-

 ally since you presumably wanted the additional dependent state-

 ments to execute. However, if the break statement or statements

 are omitted unintentionally the results will not be what you expect!

There is much to discuss about these “conditions.”

For now, however all you need to know is that these

conditions are logical expressions – that is, when you

evaluate them, you get either true (T) or false (F). These are the only two possible values for a logical expression!

This is a very unfortunate feature of the C language.

Why? It is not very consistent with how we think.

We’d like to be able to think in terms of true and false values for logical expressions, and we can. But we are forced to represent these values as 0 (false) and

non-zero (true). This is very efficient, but it is also

error-prone. As such, it violates two important

principles of programming languages:

avoidance of error-prone features

2. inclusion of features that more closely model the

 way we think.

