Reference Material for Lecture Set 10
Addresses (Pointers in C)

A) What is an address?

1) Recall one of our very early “principles”:

2) The location or "address of" a variable is the address of the first byte in memory where the "contents of" the variable are stored. For our purposes, we may consider these addresses as being assigned by the compiler when it sees the variable declaration.

3) For example, char data are assigned a single byte in memory, int data are usually assigned four bytes in memory (as depicted below), and double data may be assigned 8 bytes in memory. The actual number of bytes assigned is implementation dependent – NOT specified in the C standard.

// Results in the allocation of memory with no

// particular value assigned

int alpha;

// Results in the allocation of memory with

// an initial value of 27 assigned

int alpha = 27;

Here the contents or value of alpha is 27 (110112). The address of alpha (assigned by the compiler) is 0830F5D216.

B. What are these strange memory addresses?

1) Memory addresses are very large numbers that usually displayed in hexadecimal format

2) Hexadecimal numbers are in base 16 which means that there are 16 hexadecimal digits:

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F

 "A" represents decimal value 10, "B" represents decimal value 11,

 "C" represents decimal value 12, etc.

 c) Hexidecimal numbers are usually displayed with "0x" in front of

 the number and are followed by a series of base 16 digits:

 Hexidecimal Decimal

 --------------- ----------

 0x00000000 0

…

 0x00000009 9

 0x0000000A 10

 0x0000000B 11

…

 0x0000000F 15*

 0x00000010 16

 0x00000019 25

 0x00000020 32

 *15 is the highest state that a hexidecimal digit can represent

 so you carry over 1 to the next column and reset the current

 column to 0

C. What is the “address of” Operator?

1) The '&' operator is used to refer to the "address of" a variable

2) Using the '&' operator in front of a variable name refers to the location or "address of" the variable in memory, NOT the value or "contents of" that location in memory

 // Declare an integer variable named count

 // Initialize the value of count to 10

 int count = 10;

 // Print the "contents of" the integer variable count

 printf ("'contents of' count is %d\n", count);

 // Print the "address of" the integer variable count

 printf (" 'address of' count is %x\n", &count);

 3) The '&' operator can only be used to determine the "address of" a

 variable, it can NOT be used to SET the "address of" a variable

 // Declare an integer variable named count

 // Initialize the value of count to 10

 int count = 10;

 /* The following statement is ILLEGAL! You can NOT change

 the "address of" the variable count. The "address of" ANY

 declared variable is assigned by the compiler and remains

 fixed.

 */

 &count = 0x0041E37A;

D. What are pointers?

 1) Pointers are variables that can store addresses.

-- The value or "contents of" a pointer variable is an address

-- The location or "address of" a pointer variable is the starting address in the memory where the information associated the pointer variable name is stored

 2) Declaring pointer variables

Pointers are declared the same way as other variables but use the '*' operator in front of the variable name to indicate that the "contents of" the variable is an address that "points to" a location in memory

 int *int_ptr; // Declare an integer pointer named int_ptr

 char *char_ptr; // Declare a character pointer named char_ptr

 double *dble_ptr; // Declare a double pointer named dble_ptr

Pointers declarations indicate which C data type the pointer variable "points to"

The C data type of the pointer is used to determine how many bytes of memory should be read starting at the address the pointer "points to"

***** CIS 071 Students may skip down to the next 5-star line

2) The amount of storage allocated for a pointer variable is large enough to hold the highest starting address available

 a) The highest starting address available corresponds to the number

 of unique addresses that can be represented in the "word size"

 of the computer

 b) The "word size" of a computer is rated in "bits" and indicates

 how many "bits" of data are read during each clock cycle of the

 CPU

 -- 16 bit "word size"

 1) 16 bits (2 bytes) of data are read during each clock cycle

 of the CPU

 2) 2^16 - 1 (65,535) unique addresses

 -- 32 bit "word size"

 1) 32 bits (4 bytes) of data are read during each clock cycle

 of the CPU

 2) 2^32 - 1 (4,294,967,295) unique addresses

 -- 64 bit "word size"

 1) 64 bits (8 bytes) of data are read during each clock cycle

 of the CPU

 2) 2^64 - 1 (18,446,744,073,709,551,615) unique addresses

 c) The larger the "word size" the more information that can be read

 during each clock cycle of the CPU

 -- A 32 bit computer is 2 times as fast as a 16 bit computer

 running at the same clock speed

 -- A 64 bit computer is 2 times as fast as a 32 bit computer

 running at the same clock speed

 -- A 64 bit computer is four times as fast as a 16 bit computer

 running at the same clock speed

***** CIS C071 students begin here – most of this is a repeat of Lecture Sets 10A and 10B

 3) Using pointer variables

Pointers can be used to store and retrieve information in the same way that non-pointer variables can, but have one additional feature that allows you to store and retrieve information from the address that the pointer "points to"

The value or "contents of" the location in memory that a pointer "points to" is accessed by using the '*' operator to "de-reference" the pointer

Placing the '*' operator in front of the pointer variable name is interpreted as the value or "contents of" the location in memory that the pointer "points to", NOT the value or "contents of" the pointer variable itself

 Example:

 // Declare an integer variable named int_val that can hold

 // integer values such as 10, -256, 1034, etc.

 int intval;

 // Declare an integer pointer variable named intptr that

 // can hold the address of an integer valus

 int *intptr;

 // Assign the integer value 10 to the integer variable

 // int_val

 intval = 10;

 // Assign the "address of" the integer variable intval

 // to the integer pointer variable intptr

 // Note that there is no '*' operator in front of the

 // variable intptr which means that the "address of"

 // intval is stored in the "contents of" intptr

 int_ptr = &intval;

 // Print the value or "contents of" the integer variable

 // intval which is 10

 printf ("contents of intval is %d\n", intval);

 // Print the location or "address of" intval assigned by

 // the operating system

 printf ("address of &intval is %x\n", &intval);

 // Print the value or "contents of" the integer pointer

 // variable intptr (The contents of intptr is the

 // “address of” the integer variable intval)

 printf ("contents of intptr is %x\n", intptr);

 // Print the location or "address of" intptr assigned by

 // the compiler

 printf ("address of &int_ptr is %x\n", &intptr);

 // Finally – and most difficult (but important)

 // Print the "contents of" the location in memory that the

 // integer pointer variable intptr "points to".

 // Note that intptr points to the integer variable

 // intval, so the contents of intval will be printed.

 // Note the '*' operator in front of the variable intptr

 // results in the dereferencing of the pointer in

 // intptr. This pointer points to intval, so it is

 // comtents of intval that is printed.

 printf ("Contents of location pointed to is %d\n", *intptr);

Every variable declared in a program is given a unique address in memory with enough storage space to hold the specified C data type. Thus every variable you declare has both an address and contents.

Address of the first (of four) bytes of alpha

The contents of alpha

 ?

alpha

alpha

0830F5D216

The contents of alpha

0830F5D216

Address of the first (of four) bytes of alpha

0000 0000 0001 10112

