Lecture Set 1– Building Software

Required Reading – HK (Hanly/Koffman), Preface and Chapter 1,

Chapter 2 (2.1-2.4)

Required Assignments – Lab 1 and HW 1: Understanding A Problem

Review: Review Syllabus and Course Guidelines as well as material on Blackboard.

What do you expect to learn from this course? (In other words, why are you here?)

What is this course about? My turn … my perspective.

The syllabus says …

[image: image1.wmf]
Indeed,

programming and the intricate and sometimes annoying details of programming in C

will share the spotlight with

issues of problem solving methodologies –

understanding a problem

documenting your understanding (with appropriate tools)

designing a solution

programming a solution.

We can’t effectively done without the other.

A. What is programming?

Writing a set of instructions (in some language) to get the computer to perform some task.

B. What are some of the most common languages?

Machine Language, Assembly Language, FORTRAN, COBOL, Pascal, C, C++, C#, Java, Basic, Visual Basic, …

C. What do we know about programming?

Actually, we know a lot.

-- Programming is hard, very hard. Building good software is hard.

-- Nonetheless -- you can do it.

-- It requires some discipline and attention to detail.

-- Following a sequence of steps should help you avoid long times in lab

 We believe the process (below) is helpful

 Some two-dimensional "design diagrams" should prove to be useful aids

[image: image2.wmf]
Programming is all about modeling. The computer has no brain – we have to tell it EVERYTHING about what is to be done. If we don’t understand, completely and correctly, what is required, we are doomed to failure. Nothing we do will work.

For example:

1. How do you think people wrote programs to play chess?

2. What do you think your favorite ATM is? Why does it work the way it does? HOW does it work? You tell me.

· draw the diagram

Note carefully – the diagram consists of

· sequences

· decisions (alternatives or choices)

· and loops

This is all there is (cf Peggy Lee). ALL of the programs you write will consist of combinations of these three “structures.” In fact, most of your programs will consist of patterns of these structures. If we can gain some mastery over how we structure these patterns will help you write correct programs.

So …

Let’s try to work out the details for solving a typical (albeit easier) problem, using a behavior diagram and data table to help us.

How do we begin to solve a problem? (The Software Development Method)

A) Problem Specification

 1) Get a statement of the problem, understand what is being asked for

 -- Write a program that asks for the number of miles traveled by car

 on a trip, the miles per gallon that the car gets and the cost of

 a gallon of gasoline from the user

 -- Calculate and display the distance traveled in kilometers and the

 cost of the trip

2) Analysis of Problem

 First let’s see if we can get a grip on the behavior of this program AND, at the

 Same time, gain an understanding of the data needed to solve the problem.

Behavior

a) What if any of the data entered is negative or otherwise really “out of wack”?

b) How will this affect the diagram?

c) What have we learned from the diagram about the DATA required to solve this problem?

Now let’s see about the data required to solve the problem.

Data

(List the problem inputs

 -- Distance traveled in miles

 -- Miles per gallon that the car gets

 -- Cost of a gallon of gasoline

 (List the problem outputs

 -- Distance traveled in kilometers

 -- Cost of the trip

(List the calculated values

 -- Gallons of gasoline used

 -- Cost of the trip

 (List the formulas

 -- 1 mile = 1.609 kilometers

 -- Gallons of gasoline used = Distance in Miles / Miles per gallon

 -- Cost of the trip = Gallons of gasoline * Price per gallon of gasoline

3) Software Design (for simple programs)

-- Write an algorithm to solve the problem

 Don't attempt to address every detail of the problem at once

 Provide an overview of the steps in an outline format

 Add detailed refinements separately for each step that needs clarification

 -- Our Basic Algorithm (see Behavior Diagram)

 a) Get the distance traveled in miles, the miles per gallon that the

 car gets and the cost of a gallon of gasoline from the user

 b) Calculate the distance traveled in kilometers

 c) Calculate the cost of the trip

 d) Display the distance traveled in kilometers and the cost of the trip

-- Occassionally, some steps in our algorithms need more detail (refinements).

How do we know when a refinement is needed?

o If there is more detail in a given step than we can keep in our heads at once, it is a good idea to refine that step.

o For example, let’s look at step c (calculate cost of trip).

o To refine step c, we need the number of gallons of gasoline used first in order to calculate the cost of the trip:

 c.1 Calculate the gallons of gasoline used

 c.2 Calculate the cost of the trip

4) Implementation – Writing a C program based upon the design

In the simplest case each step in the design will correspond to a simple sequence of lines of code (or, as we shall see later, a function call) in your program. For example:

 a) Get the distance traveled in miles, the miles per gallon that the

 car gets and the cost of a gallon of gasoline from the user

 printf ("Enter the distance traveled in miles > ");

 scanf ("%lf", &miles);

 printf ("Enter the miles per gallon that the car gets > ");

 scanf ("%lf", &miles_per_gallon);

 printf ("Enter the cost of a gallon of gasoline > ");

 scanf ("%lf", &cost_per_gallon);

 b) Calculate the distance traveled in kilometers

 kilometers = miles * 1.609;

c) Based on refinements c.1 and c.2, calculate the gallons of gasoline used and then calculate

 the cost of the trip

 c.1) gallons_used = miles / miles_per_gallon;
 c.2) trip_cost = gallons_used * cost_per_gallon;

 d) Display the distance traveled in kilometers and the cost of the trip

 printf ("Distance traveled in kilometers is %f\n", kilometers);

 printf ("Trip cost is %f\n", trip_cost);

 5) Compile the code to verify that there are no syntax errors.

· Discussion: What is going on behind the scenes?

Components of a computer – especially memory

Principles – 1. Nothing can be manipulated if it is not first stored in computer memory

 2. Each and every memory cell must be accessible (addressable)

· draw picture

· numeric addresses vs variable names

· relate numeric addresses to variable names – how does this happen?

Higher Level Languages vs Machine Language – Translation Process …

Below is a partial implementation of the program. Let’s see how much we can figure out about the statements shown.

/* Miles-to-Kilometers Conversion Program */

/* Converts distance in miles to kilometers */

#include <stdio.h> /* printf, scanf definitions */

#define KMS_PER_MILE 1.609 /* naming a constant */

int main ()

{

 double miles; /* input - distance in miles */

 double miles_per_gallon; /* input - miles per gallon car gets */

 double cost_per_gallon; /* input - cost of a gallon of gas */

 double kilometers; /* output - distance in kilometers */

 double trip_cost; /* output - trip cost */

 double gallons_used; /* calculated - gallons of gas used */

 /* Get the distance from the user */

 printf ("Enter the distance traveled in miles > ");

 scanf ("%lf", &miles);

 /* Get the mileage from the user */

 ...

 /* Get the gas cost from the user */

 ...

 /* Calculate the distance in kilometers */

 kilometers = KMS_PER_MILE * miles;

 /* Calculate the number of gallons of gas used */

 ...

 /* Calculate cost of trip */

 ...

 /* Display the distance in kilometers */

 printf("That equals %f kilometers.\n", kilometers);

 /* Display the trip cost */

 ...

 return (0);

}

6) Testing

a) There are three basic types of programming errors: syntax errors, semantic (logic) errors, and run-time errors.

 i) Syntactic errors - errors in the programming language syntax

 The following code fragment is NOT syntactically correct. What is wrong?

 printf ("Enter the distance traveled in miles >);

 What will happen during compilation if your program has syntax errors?

 The program will not compile successfully until all syntax errors have been

 Corrected.

 The following code fragment has been corrected and is now syntactically correct.

 printf ("Enter the distance traveled in miles > ");

 ii) Semantic / Logic errors - Errors in the meaning or implementation of the program

 The program may compile and run successfully but the results may be incorrect.

 The following code fragment is NOT semantically correct, the formula for

 calculating kilometers is wrong. Why?

 kilometers = miles / 1.609;

You should be multiplying miles by 1.609, not dividing.

The following code fragment has been corrected and is now semantically correct

 kilometers = miles * 1.609;

 The only way you can locate errors such as these is to use carefully constructed tests to verify that the program is semantically correct. BUT … you have to know what answers are expected for each test case, or you have no way of evaluating each test.

iii) Run-Time Errors-- Errors that occur when the computer attempts to perform an illegal operation or instruction

 -- The program may compile and run but stops unexpectedly or "crashes"

Example 1: If the user enters a value of 0 for the miles_per_gallon, the

resulting calculation

gasoline_used = miles / miles_per_gallon;

will divide the number of miles traveled by 0.

Dividing a number by zero is mathematically meaningless (undefined) and is an illegal operation on the computer. It will cause your program to terminate (we sometimes say "crash", or abort) with a run-time “divide by 0 error.”

Example 2: If the user enters a value > 0 for the miles_per_gallon, the

following calculation

gasoline_used = miles / miles_per_gallon;

is valid since dividing a number by any non-zero number is defined mathmatically and is considered a legal operation, the program will run successfully

b) Testing can be used to verify that the program does not produce Run-Time errors. The goal is to test the program for several representative cases and ensure that the appropriate output is generated in each case.

--
Calculate the results you expect the program to produce for each of the test cases.

--
Compare the results you expect to see with the actual results that the program produces to verify that the program is working correctly.

--
If the results that the program produces do not match the results you expect to see then you must "debug" the program to find where the program code is incorrect.

Always verify that you are using the proper variables in your formulas and output statements.

Always verify that the variables you are using have the correct values when you use them in your formulas and output statements. In particular – always check to ensure you have entered correct values for a variable before trying to use the variable in a calculation. Be sure you are using the correct units in your computations as well.

Example 3: The following code fragment is incorrect because you can't calculate the distance traveled in kilometers until you have the distance in miles from the user:

 #define KMS_PER_MILE 1.609 /* Kilometer conversion factor */

 int main ()

 {

 double miles; /* input - distance traveled */

 double kilometers; /* calculated - distance in kilometers */

 /* Calculate the distance in kilometers */

 kilometers = miles * KMS_PER_MILE;

 /* Get the distance in miles from the user */

 printf ("Enter the distance in miles >");

 scanf ("%lf", &miles);

 /* Display the distance in kilometers to the user */

 printf ("The distance in kilometers is %f\n", kilometers);

 return (0);

 }

Note that no value was ever store in the memory cell miles before the program executed.

So, what will happen when you go to compile and execute your program?

What will happen if you accidentally enter the distance in kilometers and not miles?

A very important note:

Start

Get miles traveled

Get miles per gallon and cost per gallon

Stop

Calculate and display distance traveled

Calculate and display trip cost

 In CIS 1057, we introduce computers and computer

 programming in the C programming language. The topics

 covered include the general characteristics of computers,

 techniques of problem solving using the computer, algorithm

 specification, the C programming language, and writing,

 debugging and testing computer programs. Problem solving

 methodologies are as important as programming in C. CIS

 1057cannot be taken for credit if you have already completed

 CIS 1068 0r 1073.

Your program

In C

C Compiler

Object File (tables)

Linker – “ties” together all object files

Executable

File (Machine Language)

Loader – Copies executable file into memory – initiates execution

Input data

Output

Results

Other object files

(Usually yours)

C Standard Library header files (sets of functions)

 What is a program in C?

 A program is a collection of separate components called

 functions. Main is an example of such a function.

 There are two kinds of functions – those that you write, or

 user-defined functions, and those provided by the C

 Standard Library CSL.

There are 18 sets of functions in the CSL. Examples are stdio (a set of functions for performing input and output), math (a set of functions for performing math operations), and string (a set of functions for performing operations on strings).

The secret to success in programming involves building

a good model of

What your program has to do (its behavior)

What information is required for the program

 to do its work (data definitions and types)

and doing thorough testing.

