
A Clustering Algorithm for Intrusion Detection

Qiang Wang Vasileios Megalooikonomou

Data Engineering Laboratory (DEnLab)
Department of Computer and Information Sciences

Temple University
1805 N. Broad Street, Philadelphia, PA 19122, USA

ABSTRACT

 In this paper, we introduce a new clustering algorithm, FCC, for intrusion detection based on the concept of fuzzy
connectedness. This concept was introduced by Rosenfeld in 1979 and used with success in image segmentation; here
we extend this approach to clustering and demonstrate its effectiveness in intrusion detection. Starting with a single or a
few seed points in each cluster, all the data points are dynamically assigned to the cluster that has the highest fuzzy
connectedness value (strongest connection). With an efficient heuristic algorithm, the time complexity of the clustering
process is O(NlogN), where N is the number of data points. The value of fuzzy connectedness is calculated using both
the Euclidean distance and the statistical properties of clusters. This unsupervised learning method allows the discovery
of clusters of any shape. Application of the method in intrusion detection demonstrates that it can detect not only known
intrusion types, but also their variants. Experimental results on the KDD-99 intrusion detection data set show the
efficiency and accuracy of this method. A detection rate above 94% and a false alarm rate below 4% are achieved,
outperforming major competitors by at least 5%.

Keywords: intrusion detection, data mining, clustering, fuzzy connectedness

1. INTRODUCTION

 Today, with more and more computers getting connected to public accessible networks (e.g., the Internet), it is
impossible for any computer system to be claimed immune to network intrusions. Since there is no perfect solution to
prevent intrusions from happening, it is very important to be able to detect them at the first moment of occurrence and
take actions to minimize the possible damage.
 As defined in [1], intrusion detection is “the process of monitoring the events occurring in a computer system or
network and analyzing them for signs of intrusions, defined as attempts to compromise the confidentiality, integrity,
availability, or to bypass the security mechanisms of a computer or network”. Before data mining techniques are
introduced into this field, intrusion detection was heavily dependent on a manually maintained knowledge base which
contained signatures of all known attacks. Features of monitored network traffic were extracted and then compared with
these attack signatures. Whenever a match was found, an intrusion was claimed to be detected and it was reported to the
system administrator. Due to the difficulty and expense to manually maintain the knowledge base to reflect the ever-
changing situations, it was not feasible to continue working in this traditional way. Recently, many researchers turned
into data mining techniques to attack the problem [2, 5, 7, 9, 11].
 Data mining based intrusion detection systems can be roughly categorized into two major groups: misuse detection
and anomaly detection. In misuse detection, a model is trained with labeled data to recognize the patterns of “normal”
visits and “intrusion” attempts. Unlike the traditional knowledge base method, signatures of different types of intrusions
are learnt automatically, and they are much more powerful than manually defined signatures in recording the subtle
characteristics. Misuse detection has been shown to be very successful in detecting previously known attacks. However,
since the misuse model is highly dependent on the labeled data used in the training stage, its capabilities of detecting
new intrusion types is limited. Different from misuse detection, anomaly detection first establishes a model of normal
system behaviors, and anomaly events are then distinguished based on this model. The implicit assumption is that any
intrusive activity will be anomalous. Anomaly detection is able to detect newly emerging attacks (if only the assumption
still holds), but it also has some drawbacks. It may fail to detect some known attacks if the behaviors of them are not

significantly different from what is considered to be normal. Moreover, the false alarm rate tends to be high when the
data of some normal system behaviors are not involved in the training phase.
 Phung [6] listed several major shortfalls with traditional intrusion detection systems. With the help of data mining
approaches, these difficulties can be easily overcome. Briefly, the data mining techniques have provided the following
benefits:

• Improved variants detection. This is especially true for anomaly detection. Not limited to pre-defined
signatures, the concern with variants is not as much as before, since any deviation from a unique (normal)
signature will be treated as intrusion, including those previously unknown variants of intrusions.

• Controlled false alarms. Even though these are false positives, with a learning process to identify recurring
sequences of false alarms, it is possible for us to filter those normal system activities and keep the rate of false
alarms at an acceptable level.

• Reduced false dismissals. With data mining techniques, patterns (or signatures) of normal activities and
abnormal events (intrusions) can be created automatically. It is also possible to introduce new types of attacks
through an incremental learning process. As a result, more and more attacks can be detected correctly. This
leads to a reduced number of false dismissals.

• Improved efficiency. One very attractive feature of data mining techniques is the ability to extract most
meaningful information out of large amounts of data. After a step of feature extraction and/or feature selection,
the learning process can be done much more efficiently.

A wide variety of data mining techniques have been applied to intrusion detection, which include decision trees [5]
and neural networks [9]. With pre-labeled (normal or intrusion) network traffic data, classification-based intrusion
detection models can be trained and proved to be very useful. In real life, however, it is not always possible to have
enough training data to guarantee the effectiveness of the classifiers. At the same time, temporal changes in network
intrusion patterns and characteristics also tend to invalidate the usability of trained models. These challenges lead to the
emerging interests of researchers in applying unsupervised or clustering techniques to intrusion detection.

Recently, several unsupervised methods have been proposed. Portnoy et al. [7] introduced an algorithm to detect both
known and new intrusion types without the need to label the training data. This method, however, has its limitations. It
is based on the assumption that “the normal instances constitute an overwhelmingly large portion (>98%)”. Also, it
requires a predefined parameter of clustering width which is not always easy to find. Y-means, introduced by Guan et
al. [2], overcomes the shortcomings of the traditional K-means algorithm and can automatically decide the number of
clusters through splitting and merging clusters. However, like other centroid-based clustering algorithms, Y-means can
only deal with clusters with a spherical shape and one still needs to define a threshold for the "confident area".

 To deal with these issues, we introduce a new clustering algorithm, the Fuzzy-Connectedness Clustering (FCC) for
intrusion detection based on the concept of fuzzy connectedness. With little prior knowledge, the proposed method
allows the discovery of clusters of any shape and can detect not only the known intrusion types, but also their variants.
 The rest of the paper is organized as follows. Some background information about fuzzy connectedness is provided in
the next section. We then present the proposed clustering algorithm: FCC, followed by experimental results. Finally, we
present concluding remarks and suggestions for future study.

2. BACKGROUND

In data mining, clustering is the most important unsupervised learning process used to find the structures or patterns
in a collection of unlabeled data. During the learning process, the similarities between pairs of data instances are
considered and an optimized output is found which maximizes the similarities within the same group and the
dissimilarities between different groups. While there is no absolute criterion to judge the optimality of the clustering
result, the choice of similarity measures can surely lead to totally different groupings.

In many clustering algorithms, the spatial distance (usually Euclidean distance) between different instances is used to
measure the similarity. This has proved to be successful in many applications. It is intuitive that similar objects are
closer together while objects from different groups are far from each other. This intuition, however, is not always true
in more complicated applications, especially when the shape of data clusters is not limited to be spherical. Figure 1
shows an example in which the popular k-means clustering algorithm can not achieve satisfactory result.

(a) (b)

 Figure 1. Clustering results on a dataset with 2 clusters
(a) with k-means (b) with FCC

To deal with more complex situations, it should be more suitable to take both local neighborhood and global

information into consideration when deciding the membership of each data instance. In this paper, we propose a new
clustering algorithm which uses fuzzy connectedness as the similarity metric.
 The concept of fuzzy connectedness was first introduced by Rosenfeld in 1979 [8]. It can be utilized to deal with the
spatial vagueness when the spatial entities of data do not have homogeneous interiors and sharply boundaries. Fuzzy
connectedness has been successfully applied to image processing. In an image segmentation framework introduced by
Udupa et al. [10], fuzzy affinities are assigned to the target data object during the classification. The affinity between a
pair of pixels is defined as a weighted function of their adjacencies in the coordinate space, the intensity space, and the
intensity gradient space.

In a recent work, Herman and Carvalho [3] generalized the concept of fuzzy connectedness. For a finite set of data
points, the strength of the link from one point to another is defined as the reciprocal of the distance between them and it
can be automatically defined based on statistical properties of the links within regions of points identified as belonging
to the same groups. A chain is a sequence of ordered points and the strength of a chain is its weakest link. Taking fuzzy
connectedness as the similarity metric, the task of a clustering process is to find the strongest path of every data point
and assign the point to the group that path leads to.

Basic definitions that we use in this paper are presented below.
Definition 1: For a positive integer K, a K-FCC of a set D (of points) is a function which maps each point Dc∈ into a

(K+1)-dimensional vector
cσ = (c

K
ccc σσσσ ,...,,, 210), such that

c
iσ ∈ [0,1], and for at least one k, 1 ≤ k ≤ K,

c
0σ =

c
kσ ;

for 1 ≤ m ≤ K and m ≠ k, c
mσ = 0 or c

mσ = c
kσ .

 Definition 2: A fuzzy affinity on D is a function:]1,0[: 2 →Dϕ . ϕ (c, d) is the strength of the link (c,d) .

 Definition 3: A chain in U⊆ D from c0 to cN is a sequence),0(NC = (c0, c1,c2, …cN) in U and the strength of the chain

Uϕ (),0(NC) =min(Uϕ (cn-1, cn)), 1 ≤ n ≤ N.

Given the above definitions, a clustering process is to find the mapping of K–FCC which is deduced from the

calculation of fuzzy affinities between pairs of points. In this process, the definition of the fuzzy affinity function ϕ is
very essential; one can include the statistical information of each cluster to make the results more reliable. As shown in
the example of Figure 1, when only the Euclidean distance between pairs of points is considered, it is not possible to
separate the two clusters correctly. However, after we involve the statistical information of each cluster, e.g., the
distribution of Euclidean distance among each point and its neighbors, the clustering result turns out to be perfect
(Figure 1b).

In the proposed method, in order to initialize the clustering process, we need a little prior knowledge. This is in the
form of a few labeled data points in each possible cluster. This requirement, however, is usually easy to satisfy in
intrusion detection applications. We discuss the details of our clustering algorithm in the next section.

3. METHODOLOGY

The proposed clustering algorithm starts by assigning the seed points into corresponding clusters. For each unlabeled

data point c, its fuzzy affinity to each cluster Uk, 1≤k≤K is calculated and its mapping vector cσ = (c
K

ccc σσσσ ,...,,, 210)

is updated accordingly. Finally, the data point c is assigned to the cluster Uk to which c has the highest fuzzy affinity (c
0σ =

c
kσ).
The details of the algorithm are given in Table 1. This is similar to the segmentation algorithm introduced in [3].

However, unlike image data for segmentation, data to be clustered usually have higher (more than 2 or 3) dimensions
and there is no strictly defined spatial adjacency (like 4 or 8-connectinity in image data) among different data points. In
order to solve this problem, the concept of neighborhood is defined. The neighborhood of a data point consists of a
fixed number of its nearest neighbors in the multi-dimensional space. A point is considered to be fuzzy connected only
to those points in its neighborhood. Moreover, as defined later, the formula of fuzzy affinity is also different.

 Algorithm 1. Fuzzy-connectedness based Clustering (FCC)

Input: Data D, number of clusters K, seed points S(Uk) 1 ≤ k ≤ K;
Output: K -FCC matrix }0,|{ KkDcc

k ≤≤∈= σσ and label matrix label(c) for Dc ∈ .

1: for every Dc ∈
2: for k = 1: K

3: c
kσ = 0

4: Heap = φ

5: for k = 1: K
6: Uk = S(Uk) ∪ {nearest neighbors of S(Uk)}
7: Heap = Heap ∪ Uk
8: for every

kUc ∈ c
kσ = 1

9: Max_link = 1
10: while Max_link > 0
11: for k = 1: K
12: while |Uk | > 0
13: d = Uk (1); Uk = Uk

 - d
14: NN = {nearest neighbors of d}
15: C = }_&)),(,_min(|{ 0 linkMaxcdlinkMaxNNc c

k
c
k ≤<∈ σϕσ

16: while |C| > 0
17: c = C(1); C = C -c
18: l = min(Max_link,),(cdkϕ)

19: if Max_link = l and c
kσ < Max_link then Uk = Uk ∪ {c}

20: if c
0σ < l then

21: if c
0σ = 0 then Heap = Heap ∪ {c}

22: for n = 1: K 0=c
nσ

23: if c
0σ ≤ l then c

0σ = c
kσ = l

24: Heap = Heap - {c| Heapc ∈ and c
0σ = Max_link}

25: Max_link = Max(c
0σ), Heapc ∈

26: for every Dc∈

27: label(c) = k with c
kσ = c

0σ

The algorithm starts with an initialization process (steps 1-9). For every data point Dc∈ , its fuzzy mapping vector is
initialized with zeros. As shown later in the algorithm, the values in the mappings vectors are used to decide the
memberships of the data points. All the seed points are put into corresponding clusters and certain items in their
mapping vectors are set to 1. A heap data structure is used to temporarily contain the unlabelled data points. It is set to

empty at the beginning. Before the main loop (10-27) of the algorithm, only the seed points S(Uk) and their nearest
neighbors are labeled. Their linkage to their cluster is considered the strongest and the value is set to one. Starting with
these points, all the clusters try to expand. The strength of the linkage of each unlabeled point to a cluster is the strength
of a chain (path) that connects this point to one seed point in that cluster. After all the fuzzy affinities are calculated, we

get the K-FCC for the dataset D. The label of each data point Dc∈ is finally decided by its mapping vector cσ . It is

assigned to cluster k if c
kσ is the largest element of the vector.

In the FCC algorithm, a priority heap is used for the operations of insertion into (step 21) and removal (step 24) from
the priority queue. With the definition of nearest neighborhood of an instance, there are no more than a fixed number of
nearest neighbors that need to be processed in step 15. If there are N instances in D and n is used to denote the number
of nearest neighbors, the computational complexity of FCC is O(N(logN + nK)).

There are two issues that are very important to this algorithm: one is related to the definition of neighborhood (NN) of
a data instance, the other is how to calculate the fuzzy affinity between each pair of instances.

For the first issue, the neighborhood is defined in Euclidean space. A small number (e.g. 4) of neighbors around the
target point with the shortest Euclidean distances are defined to be its nearest neighbors. With an indexing scheme such
as an R-tree, it is very easy to find the neighborhood in a short time.

In order to calculate the fuzzy affinity of an instance c and another instance kUd ∈ (target cluster), besides their

spatial adjacency, we also involve the statistical information about the cluster Uk. The distribution information of a
certain variable (e.g., Euclidean distance between nearest neighbors) of Uk is stored and kept up to date. When a new
instance comes, its probability of falling into Uk is calculated using the distribution information and the Euclidean
distance between the new instance and its nearest neighbor d in Uk.

Let E(c, d) be the Euclidean distance between c and d, and Mk and Sk be the mean and standard deviation of the
Euclidean distance between every pair of instances already in Uk. The fuzzy affinity of (c,d) is then defined as:

),(dckϕ =

⎪
⎩

⎪
⎨

⎧ ∉

otherwise.
)(

)),((

 NN(d) c if 0

,

,

kSM

SM

M

dcE

kk

kk

ρ
ρ (1)

In the definition above,

kk SM ,ρ is the probability density function of a Gaussian distribution with mean Mk and standard

deviation Sk.

4. EXPERIMENTAL RESULTS

 In order to evaluate FCC, we tested the algorithm on a benchmark dataset, the network traffic data from the KDD
Cup 1999 Dataset [4]. Two indicators, Detection Rate and False Alarm Rate, were used to measure the accuracy of the
method. The Detection Rate shows the percentage of true intrusions that have been successfully detected. The False
Alarm Rate is defined as the number of normal instances incorrectly labeled as intrusion divided by the total number of
normal instances. A good method should provide a high Detection Rate together with a low False Alarm Rate.

4.1 Data preparation

 The KDD dataset includes a wide variety of intrusions together with normal activities simulated in a military network
environment. The simulated attacks fall in one of four major categories: DOS (denial of service), R2L (unauthorized
access from remote machine), U2R (unauthorized access to local superuser privilege) and Probing (surveillance and
other probing). Each instance in the dataset consists of the extracted features of a connection record. These features are
either symbolic or continuous.

In the FCC algorithm, the Euclidean distance is chosen as the metric to calculate the distance among different
instances (points). Since the Euclidean distance can deal only with continuous types of data, all the symbolic features
are removed from the data. At the same time, in order to avoid the dominance of any single (or several) feature(s) in the
distance calculation, we normalize the data so that the values of every feature have the same range. In the experiments,

the values of each feature are normalized with the minimum and maximum values of that feature so that they fall in the
range of [0,1].

)min()max(

)min(][_
][_

ii

i

featurefeature

featureiinstold
iinstnew

−
−

= (2)

4.2 Results

In our experiments, we consider a subset of the KDD data, which consists of 2776 instances. Except for a few seed
points, the labeling information is not utilized in the experiments. It is, however, used after our experiments are
performed, to evaluate the results and calculate the Detection Rate and False Alarm Rate.

In the first experiment, besides the normal instances, instances of four popular attacks are involved: smurf, ipsweep,
neptune and back. For each type, only one seed point is labeled at the beginning, and four nearest neighbors are defined
as the nearest neighborhood of each instance. As shown in Table 1, most attacks can be distinguished from the normal
activities and the Detection Rate is as high as 97.8%. At the same time, approximately 3.6% normal activities are
erroneously labeled as attacks. Among the instances labeled as attacks, about 95.8% of them are classified to the correct
attack types. The difference between this accuracy and the Detection Rate is caused by the existing fuzziness among
different intrusion types.

To test the ability of the FCC algorithm to detect new variations of attacks, we add instances of 10 other attack types,
such as nmap, teardrop and dportsweep. While keeping the seed points the same as before, we repeat the experiment.
Assuming that the new types of intrusion tend to have stronger fuzzy connectedness to instances of some existing types,
we are able to keep the detection rate nearly the same as in the previous experiments. Nearly all the new attack
instances are labeled with one of the four previous intrusion types and this keeps the Detection Rate at a high level. The
actual Detection Rate is 98.1%, which is even better than before. At the same time, the False Alarm Rate stays at a
rather low level.

Table 1. Experimental results of FCC

Experiment Detection Rate False Alarm Rate

A 97.8% 1.8%

B 98.1% 1.6%

The results of the second experiment clearly demonstrate the great potential of FCC in detecting newly emerging

intrusions. It is feasible to apply FCC on currently available (unlabeled) data, and the clustering results can be used for
future incremental learning. As long as the assumption that variations of intrusion types have similar distributions to
some known types holds, instances of new intrusion variations will have larger value of fuzzy connectedness to a
certain cluster labeled as intrusion and be put into that cluster. Even though we may not know the actual type of the new
variation, a correct intrusion alarm will be reported.

4.3 Parameters

In the FCC algorithm, two parameters are involved: (a) the number of seed points and (b) the number of neighbors in
the neighborhood. The first parameter is decided using prior knowledge about the data. The minimum value is 1, which
means that each cluster has at least one instance at the very beginning. Usually, the more seed points we have, the more
information about the cluster will be given, and this will possibly provide more accurate results. However, depending on
the distributions of different clusters, a small number of seed points may also give satisfactory results, as shown in
Table 1.

The number of neighbors used to define the neighborhood is also important. As discussed earlier, when calculating
the fuzzy connectedness of an instance to other instances in a certain cluster, both the local information about the
distance between two instances and the statistical information about that cluster are involved. An instance x is fuzzy
connected to another instance y only if y falls in the neighborhood of x. If the number of neighbors is too small, only a
few instances tightly close to x are considered reachable from x, and this may separate x from the cluster it really
belongs to; when this number is too large, the importance of local connectivity will be reduced and it is possible for two
instances far from each other to be considered as fuzzy connected. This may bring two or more clusters close to each

other forming a single cluster, which is also not desirable. So, there should be a trade off among the effects of varying
the two parameters. Experimental results with different settings of the parameters are displayed in Table 2.

Table 2. Experimental results with different parameters (a) Detection Rate (b) False Alarm Rate

(a) (b)
number of seed points

1 3 10
number 2 96.3% 93.8% 94.0%

of nearest 4 97.8% 96.7% 97.1%

neighbors 8 98.7% 96.7% 98.0%

number of seed points

1 3 10
number 2 2.3% 3.2% 4.2%

of nearest 4 1.8% 2.2% 3.3%

neighbors 8 1.5% 2.2% 1.6%

With different configurations of the parameters, while Detection Rate stays high and False Alarm Rate stays low,

there are some changes in the numbers. When the number of nearest neighbors increases from 2 to 4, both Detection
Rate and False Alarm Rate are slightly improved. The reason is that there are more choices for an instance to get
connected and this helps it to find the correct cluster. Consequently, fewer attacks will be mislabeled as normal and
fewer normal instances will be treated as intrusion. However, there is not always improvement with the increase of the
number of nearest neighbors considered. As shown in Table 2, with 3 seed points for each cluster, both Detection Rate
and False Alarm Rate remain the same when the number of neighbors increases from 4 to 8.

Comparing with the other two clustering algorithms introduced in [2, 7], the Detection Rate of FCC is at least 5%
higher. Even though the False Alarm Rate with FCC is also a little higher, these results are very encouraging since
higher Detection Rate is more important in most applications. As for the 4 centroid-based clustering approaches
discussed in [11], even though the evaluation dataset is different, none of them is reported to have a better result than
FCC.

An interesting observation from Table 2 is the decrease of performance with the increase of the number of seed
points. Since all the seed points are chosen randomly, they may not reflect the actual distributions of those clusters. If
some of the seed points are selected from thin areas of the clusters, they may lead to deviation when the clusters expand.
Correspondingly, there will be increased errors in the clustering procedure. However, there is no theoretical proof that
more seed points will lead to poorer performance. The selection of seed points requires further study.

Figure 2. Running time of experiments

The parameters affect not only the accuracy of the FCC algorithm, but also its efficiency. Figure 2 shows that the

more seed points we have, the less running time the algorithm requires, which means higher efficiency. With a fixed
number of seed points, larger number of neighbors leads to reduced efficiency.

5. CONCLUSIONS

 In this paper, we introduce a new clustering algorithm, FCC, for intrusion detection. This algorithm uses the concept
of fuzzy connectedness to calculate the similarities among different data instances. Starting with a single or a few seed
points in each cluster, all the data points are dynamically assigned to the cluster that has the highest fuzzy

connectedness value (strongest connection). In calculating the fuzzy connectedness, both local distance information and
statistical properties of clusters are considered. Comparing with the frequently utilized Euclidean distance, the new
similarity metric is more robust, and there is no restriction on the shape of clusters that can be discovered. FCC has also
some other advantages over the other previously proposed clustering algorithms: no predefined “cluster width”, no
threshold for “confidence area”, etc. Although the FCC algorithm requires a parameter K which denotes the number of
clusters, most of the time it is not necessary to know an exact value for it. In many cases where we just care about
whether an instance is an intrusion and do not need to know about the exact intrusion type, the parameter K can be fixed
as a constant, i.e., K=2. With an efficient heuristic algorithm, the time complexity of the clustering process is
O(NlogN+nK), where N is the number of data points and n, K are constants. Moreover, this unsupervised learning
method can detect not only the known intrusion types, but also their variants. The two other parameters in FCC, the
number of seed points and the number of neighbors, do not seem to affect greatly the performance of the algorithm.
Experimental results on a subset of KDD-99 dataset showed the stability of efficiency and accuracy of the FCC
algorithm. With different settings, the Detection Rate stayed always above 94% while the False Alarm Rate was below
4%.

For future work, we need to find out if there is a general accepted definition of fuzzy affinity. With different
distribution variable involved in the calculation, the values of fuzzy affinity may be different and it may lead to different
clustering results. Even though the one we employ in equation (1) gives good results on the KDD-99 data set, it is not
necessary that it will be appropriate for other datasets.

ACKNOWLEGEMENTS

 The authors are grateful to G. Herman and B. Carvalho for providing helpful comments and source code for a fuzzy
connectedness algorithm for image segmentation. This material is based upon work supported by NSF under Grant No.
IIS-0237921.

References

[1] R. Bace and P. Mell, “Intrusion Detection Systems”, NIST Special Publications SP 800-31, November, 2001.
[2] Y. Guan, A. Ghorbani and N. Belacel. “Y-means: A Clustering Method for Intrusion Detection”. Proceedings of
Canadian Conference on Electrical and Computer Engineering. Montreal, Quebec, Canada. May 4-7, 2003.
[3] G. Herman and B. Carvalho. “Multiseeded Segmentation Using Fuzzy Connectedness”. IEEE Transactions on
Pattern Analysis and Machine Intelligence 23(5): 460-474, 2001.
[4] KDD Cup 1999 data. University of California, Irvine.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,1999.
[5] X. Li and N. Ye, “Decision tree classifiers for computer intrusion detection”, Real-time system security, Nova
Science Publishers, 2003.
[6]M. Phung, Data Mining in Intrusion Detection? Intrusion Detection FAQ. October 24, 2000.
http://www.sans.org/newlook/resources/IDFAQ/data_mining.htm
[7] L. Portnoy, E. Eskin and S. Stolfo. ``Intrusion detection with unlabeled data using clustering''. Proceedings of ACM
CSS Workshop on Data Mining Applied to Security (DMSA-2001). Philadelphia, PA: November 5-8, 2001.
[8] A. Rosenfeld, “Fuzzy Digital Topology,” Information and Control, vol. 40, pp. 76-87, 1979.
[9] J. Ryan and M. Lin, “Intrusion Detection with Neural Networks”, Advances in Neural Information Processing
Systems 10, MIT Press, June, 1998.
[10] J. Udupa and S. Samarasekera. Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications
in Image Segmentation. Graphical Models and Image Processing, 58(3):246–261, 1996.
[11] S. Zhong, T. Khoshgoftaar and N. Seliya, “Evaluating Clustering Techniques for Network Intrusion Detection”,
Proceeding of 10th ISSAT Int. Conf. on Reliability and Quality Design, pp. 149-155. Las Vegas, Nevada, USA. August
2004.

